Pricing CVA adjustments: An expansion approach for WWR

Marouan Iben Taarit

Natixis & Cermics (Paris, France)

Advances in Financial Mathematics 2017
Paris, France
Acknowledgments

I am grateful to professor Bernard Lapeyre for valuable discussions and advise.
Introduction

- **XVA** is one of the most demanding issues in terms of prices and Greeks calculations
 - global portfolio pricing and collateral netting
 - incremental charging and reallocation
 - management of cross-asset and hybrid risks (eg. *WWR*).
- Consistency with spot prices is required (reusing validated and proven pricers)
- We show in Iben Taarit (2015) how to upgrade existant pricers in order to account for *WWR*
A brief reminder on XVA (cont’)

- At valuation time 0, we define the Bilateral Credit Valuation Adjustment (BCVA) as seen by the bank B as

$$BCVA(0) = LGD_C \mathbb{E} \left[1_{\{\tau_C \leq \tau_B\}} 1_{\{\tau_C < T\}} D(0, \tau_C)(NPV(\tau_C, T))^+ \right]$$ \hspace{1cm} (1)

- Analog formula for the Bilateral Debt Valuation Adjustment (DVA)
- A classical simplifying assumption consists in considering the default of only one counterparty

$$UCVA(0, T) = LGD_C \mathbb{E} \left[1_{\{\tau_C < T\}} D(0, \tau_C)(NPV(\tau_C, T))^+ \right]$$ \hspace{1cm} (2)

- Unilateral adjustments = mutual exclusion of defaults
Pricing framework

- **Main goal**: approximated price (fast/accurate) of a contingent claim \(h(X_T) \) subject to the default of the supplying party, i.e. \(\tau < T \)
- Stochastic intensity model for the default time \(\tau \)

\[
\begin{align*}
\tau^e &= \inf \left\{ t > 0 \mid \int_0^t \lambda^e_s ds > \xi \right\} \\
d\lambda^e_t &= \kappa(t) (\psi(t) - \lambda^e_t) \, dt + \epsilon \nu(t, \lambda^e_t) \, dW_t \\
\lambda^e_0 &= \lambda_0 > 0
\end{align*}
\]

where \(W : \mathbb{R} \)-valued SBM, \(\xi \xrightarrow{\mathcal{L}} \mathcal{E}(1), \epsilon \in [0, 1] \)

- In addition, let \((X_t)_{t \geq 0}\) be a \(\mathbb{R}^n \)-valued diffusion process governed by

\[
dX_t = (\Phi(t) + \Theta(t) X_t) \, dt + \Sigma(t) \, dB_t \, , \, X_0 \in \mathbb{R}^n
\]

with \(\Phi : [0, T] \rightarrow \mathbb{R}^n \), \(\Theta : [0, T] \rightarrow \mathbb{R}^{n \times n} \), \(\Sigma : [0, T] \rightarrow \mathbb{R}^{n \times d} \) and \((B_t)_{t \geq 0}\) a \(\mathbb{R}^d \)-valued SBM.
We define the instantaneous correlations \(\rho = (\rho_i)_{i=1 \ldots d} \) such that

\[
d \langle W, B_i \rangle_t = \rho_i dt , \quad 1 \leq i \leq d
\]

(5)

\(\rho \neq 0 \) and \(\nu(t, \lambda_t^\epsilon) \neq 0 \) \(\Rightarrow \) Wrong-way risk

Recovery in market value convention (recovery rate \(\delta \))

\[
u_{h,\delta}^\epsilon (0, T) = \mathbb{E} \left[h(X_T) 1_{\{\tau > T\}} + (1 - \delta) u_{h,\delta}^\epsilon (\tau^-, T) 1_{\{\tau \leq T\}} \right] \quad (6)
\]

Duffie and Singleton (1999)

\[
u_{h,\delta}^\epsilon (0, T) = \mathbb{E} \left[\exp \left(- (1 - \delta) \int_0^T \lambda_t^\epsilon dt \right) h(X_T) \right] \quad (7)
\]
Pricing methodology

Main Objective

$$u_{h,\delta}^\epsilon (S, T) = u_{h,\delta}^\epsilon (S, T) + \text{weighted sum of Greeks of } \mathbb{E} [h (X_T)] + \text{Error}$$

where

- $$u_{h,\delta}^0 (T) = e^{-(1-\delta) \int_0^T \lambda_t^0 dt} \mathbb{E} [h (X_T)]$$ (classical pricing)
- The weighted sum of Greeks of $$\mathbb{E} [h (X_T)]$$ is given by the system

we want the accuracy to be bounded using

- The regularity of the intensity process $$\lambda_t^\epsilon$$
- The dependence of $$u_{h,\delta}^\epsilon$$ on $$\int \lambda_s^\epsilon ds$$
Comparison with similar works

- Expansion approach for credit intensity diffusion already addressed in Muroi 2005 and Muroi 2012
 - Linearization of the payoff function \(\Phi(e^r(T), e^\lambda(T)) \) (smoothness requirements)
- We follow Benhamou et al. (2009, 2010a,b). However, the setting is fundamentally different.
 - We perform expansion for \(e^{-(1-\delta) \int_0^T \lambda_s^e ds} \)
 - Minimal dependence on the regularity of \(h \)
Theorem (Second order approximation)

Under regularity assumption of the drift and diffusion of \((\lambda^\varepsilon_t)\), one has

\[
\begin{align*}
 u_{h,\delta}^{\varepsilon=1} (0, T) &= u_{h,\delta}^{\varepsilon=0} (0, T) + (1 - \delta)^2 \; C_{0,1} (T) u_{h,\delta}^{\varepsilon=0} (0, T) \\
 &\quad \quad - (1 - \delta) \; C_{1,1} (T) \cdot \text{Greek}^{(1)} (T, X_T) \\
 &\quad \quad - (1 - \delta) \left(C_{2,1} (T) - (1 - \delta) \; C_{2,2} (T) \right) \cdot \text{Greek}^{(2)} (T, X_T) \\
 &\quad \quad + \text{Error}^{\varepsilon=1}_2
\end{align*}
\]

- \(C_{0,1} (T) = \frac{1}{2} \int_0^T \left(\int_t^T e^{-\int_s^t \kappa(u) du} ds \nu(t) \right)^2 dt \)
- \([C_{1,1} (T)]_i = \int_0^T \left(\int_t^T e^{-\int_s^t \kappa(u) du} ds \right) \nu(t) \left[\Sigma(t, T) \rho \right]_i dt \)
- \([C_{2,1} (T)]_{i,j} = \int_0^T \left(\int_t^T \left(\int_s^T e^{-\int_u^s \kappa(v) dv} du \right) \nu^{(1)} (s) \left[\Sigma(s, T) \rho \right]_i ds \right) \nu(t) \left[\Sigma(t, T) \rho \right]_j dt \)
- \([C_{2,2} (T)]_{i,j} = \ldots \)
Numerical experiments

- Log-normal diffusion of the spot S_t. Default parameters are

<table>
<thead>
<tr>
<th>T</th>
<th>$r/q/d$</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>30%</td>
</tr>
</tbody>
</table>

- 3 models of λ_t^e

<table>
<thead>
<tr>
<th>\mathcal{N}</th>
<th>\mathcal{LN}</th>
<th>\mathcal{C}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu(t, \lambda_t^e) = \bar{\nu}_n$</td>
<td>$\nu(t, \lambda_t^e) = \bar{\nu}_{ln}\lambda_t^e$</td>
<td>$\nu(t, \lambda_t^e) = \bar{\nu}_c\sqrt{\lambda_t^e}$</td>
</tr>
</tbody>
</table>

- 2 risk regimes

<table>
<thead>
<tr>
<th>Mid Risk</th>
<th>λ_0</th>
<th>κ</th>
<th>ψ</th>
<th>ρ</th>
<th>$\bar{\nu}_n$</th>
<th>$\bar{\nu}_{ln}$</th>
<th>$\bar{\nu}_c$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01</td>
<td>1</td>
<td>0.02</td>
<td>30%</td>
<td>1%</td>
<td>50%</td>
<td>20%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High Risk</th>
<th>λ_0</th>
<th>κ</th>
<th>ψ</th>
<th>ρ</th>
<th>$\bar{\nu}_n$</th>
<th>$\bar{\nu}_{ln}$</th>
<th>$\bar{\nu}_c$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.03</td>
<td>1.6</td>
<td>0.08</td>
<td>90%</td>
<td>3%</td>
<td>100%</td>
<td>50%</td>
</tr>
</tbody>
</table>

- Benchmarking *versus* Monte Carlo (Paths = 10^5, 24 steps/ year)
Contingent Call option

(a) Relative Error: Mid risk parameters

<table>
<thead>
<tr>
<th></th>
<th>K/S</th>
<th>CI</th>
<th>Proxy</th>
<th>2nd Order Exp.</th>
<th>3rd Order Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>80%</td>
<td>0.12%</td>
<td>1.22%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>0.15%</td>
<td>1.42%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>120%</td>
<td>0.17%</td>
<td>1.55%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>LN</td>
<td>80%</td>
<td>0.12%</td>
<td>1.22%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>0.15%</td>
<td>1.37%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>120%</td>
<td>0.17%</td>
<td>1.54%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>CIR</td>
<td>80%</td>
<td>0.12%</td>
<td>3.28%</td>
<td>0.52%</td>
<td>0.07%</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>0.14%</td>
<td>3.43%</td>
<td>0.54%</td>
<td>0.05%</td>
</tr>
<tr>
<td></td>
<td>120%</td>
<td>0.17%</td>
<td>4.11%</td>
<td>0.65%</td>
<td>0.06%</td>
</tr>
</tbody>
</table>

(b) Relative Error: High risk parameters

<table>
<thead>
<tr>
<th></th>
<th>K/S</th>
<th>CI</th>
<th>Proxy</th>
<th>2nd Order Exp.</th>
<th>3rd Order Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>80%</td>
<td>0.12%</td>
<td>7.65%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>0.14%</td>
<td>8.57%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>120%</td>
<td>0.17%</td>
<td>9.32%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>LN</td>
<td>80%</td>
<td>0.11%</td>
<td>23.28%</td>
<td>2.34%</td>
<td>1.17%</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>0.13%</td>
<td>27.84%</td>
<td>2.84%</td>
<td>1.57%</td>
</tr>
<tr>
<td></td>
<td>120%</td>
<td>0.16%</td>
<td>31.29%</td>
<td>3.13%</td>
<td>1.69%</td>
</tr>
<tr>
<td>CIR</td>
<td>80%</td>
<td>0.11%</td>
<td>40.50%</td>
<td>7.19%</td>
<td>3.72%</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>0.12%</td>
<td>47.17%</td>
<td>8.55%</td>
<td>4.55%</td>
</tr>
<tr>
<td></td>
<td>120%</td>
<td>0.15%</td>
<td>54.05%</td>
<td>9.76%</td>
<td>5.41%</td>
</tr>
</tbody>
</table>
A Wrong-way risk adjustment for CVA/DVA

- UCVA is usually approximated by

\[
UCVA(0) \approx LGD_C \sum_{m=1}^{M} D(0, T_m) \mathbb{E} \left[(1_{T_{m-1} < \tau_C} - 1_{T_m < \tau_C}) (V(T_m, X_{T_m}))^+ \right]
\]

\[
\approx LGD_C \sum_{m=1}^{M} D(0, T_m) (u^e_{V+}(T_{m-1}, T_m) - u^e_{V+}(T_m, T_m))
\]

where

\[
u^e_{V+},0 : (s, t) \mapsto \mathbb{E} \left[e^{-\int_s^t \lambda^e_{\omega} d\omega} (V(t, X_t))^+ \right]
\]

Consequence

With \(\delta = 0 \) and \(h = V^+ \), our approximation formulas yield

\[
UCVA(0) = UCVA^0(0) + \sum_{m=1}^{M} \text{weighted sum of Greeks of } \mathbb{E} \left[(V(X_{T_m}))^+ \right] + \text{Error}
\]

Wrong-way Risk Adjustment = \(UCVA(0) - UCVA^0(0) \)

= Weighted sum of exposure Greeks
A WWR adjustment in the bilateral framework
We apply the same methodology

\[BCVA(0) \]
\[\approx LGD_C \sum_{m=0}^{M} D(0, T_m) \mathbb{E} \left[\left(1_{\{ \tau_C \geq T_{m-1} \}} - 1_{\{ \tau_C \geq T_m \}} \right) 1_{\{ \tau_B > T_m \}} (V(T_m, X_{T_m}))^+ \right] \]
\[\approx LGD_C \sum_{m=1}^{M} D(0, T_m) \left(u^{\epsilon}_{V+,0}(T_{m-1}, T_m) - u^{\epsilon}_{V+,0}(T_m, T_m) \right) \]

where

\[u^{\epsilon}_{V+,0}(s, t) = \mathbb{E} \left[1_{\{ \tau_C \geq s \}} 1_{\{ \tau_B \geq t \}} (V(t, X_t))^+ \right] \]
\[= \mathbb{E} \left[\left(e^{-\int_0^s \lambda_C \omega \, d\omega} e^{-\int_0^t \lambda_B \omega \, d\omega} \right) (V(t, X_t))^+ \right] \]

Consequence
With \(\delta = 0 \) and \(h = V^+ \), our approximation formulas yield

\[BCVA(0) = UCVA^0(0) + \sum_{m=1}^{M} \text{weighted sum of Greeks of } \mathbb{E} \left[(V(X_{T_m}))^+ \right] + \text{Error} \]

\[\text{Bilateral Wrong-way Risk} = UWWR_C + UWWR_B + \text{First to default Risk} \]
References

