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Eisenberg–Noe–Suzuki model 1 2

System: N banks, e i ≥ 0 is the cash disposed by the ith banks,
Lij ≥ 0 is the liability of the bank i to the bank j , L̃i :=

∑
j Lij .

Clearing is a procedure of repaying debts in full if possible or to the
complete exhausting of resources. The repayment is proportional to
the volume of borrowing.
Let Πij := Lij/L̃i , if L̃i 6= 0, and Πij := δij otherwise, where the
Kronecker symbol δij = 0 for i 6= j and δii = 1.
For the ith bank the repayment pi ≥ 0 is split between creditors :
the jth creditors received the Πijpj unit.
The problem : find a (column) vector p ∈ RN such that

pi = (e i +
∑
j

Πjipj) ∧ L̃i .

1. Eisenberg L., Noe T.H. Systemic risk in financial systems. Management
Science, 2001

2. Suzuki T. Valuing corporate debt: the effect of cross- holdings and debts.
J. Oper. Res. Soc. of Japan, 2002.
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Existence of clearing vectors via fixpoint theorems

Consider the mapping f : [0, L̃]→ [0, L̃] with

f (p) = (e + Π′p) ∧ L̃.

Notations correspond to the pathwise ordering generated by RN
+.

The problem is to find its fixed points, i.e. solutions of the
equation f (p) = p. Apparently, f is a continuous mapping of the
compact convex set [0, L̃] into itself. The Brouwer theorem ensures
that such a point does exist.
Since [0, L̃] is a complete lattice and f is a order preserving
mapping, one can use the Knaster–Tarski theorem. It is much
simpler and provides more information.
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Knaster-Tarski fixpoint theorem 3

A complete lattice is a poset where each subset A 6= ∅ has the
supremum and infimum. By definition, sup A is an element x̄ such
that x̄ ≥ x for all x ∈ A and if y ≥ x for all x ∈ A then y ≥ x̄ .

Theorem

Let X be a complete lattice and f : X 7→ X be an order-preserving
mapping, L = {x : f (x) ≤ x}, U = {x : f (x) ≥ x}. The set L ∩ U
of fixed points of f is non-empty and has the smallest and the
largest elements which are, respectively, x := inf L and x̄ := sup U.

Proof. Note: sup X ∈ L. Let x ∈ L. Then x ≤ x . By monotonicity
f (x) ≤ f (x) ≤ x . Thus, f (x) ≤ x := inf L. So, x ∈ L. Since
f (L) ⊆ L, also f (x) ∈ L, hence, x ≤ f (x), i.e. x = f (x). All fixed
points belong to L. Hence, x is the smallest one.
The proof of the statement for the largest fixed point is analogous.

3. Tarski A. A lattice-theoretical fixpoint theorem and its applications. Pacific
J. Math., 1955.
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Monotonicity with respect to a parameter 4

Remark. Let f1, f2 be two order-preserving mappings of a complete
lattice (X ,≥) into itself, f2 ≥ f1. Then

inf{x : f1(x) ≤ x} =p
1
≤ p

2
= inf{x : f2(x) ≤ x},

sup{x : f1(x) ≥ x} =p̄1 ≤ p̄2= sup{x : f2(x) ≥ x}.

4. Milgrom J., Roberts J. Comparing equilibria. Amer. Econ. Rev., 1994
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The equity C (p) does not depend on the clearing vector.

Since (x − y)+ = x − x ∧ y ,

p = (e + Π′p) ∧ L̃ ⇔ C (p) :=(e + Π′p − L̃)+ = e + Π′p − p.

Multiplying from the left by 1′ = (1, . . . , 1)′ we get that

1′(e + Π′p − L̃)+ = 1′e

The total of equities does not depend on the clearing vector.
Since C (p) ≤ C (p̄), this implies that, C (p) = C (p̄).

Graph structure is introduced as in Markov chains.
Let o(i) be the orbit of i , i.e. the set of j 6= i for which there is a
path i → i1 → i2 → ...→ j , where i → i1 means that Πij > 0. If
o(i) 6= ∅, it is the set of all direct or indirect creditors of i .
Since Π1o(i) ≥ 1o(i), we have

1′o(i)C = 1′o(i)(e + Π′p − p) ≥ 1′o(i)e.
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Uniqueness. If 1′o(i)e > 0 for all o(i) 6= ∅, then p = p̄.

Proof. Note that 1′o(i)C = 1′o(i)(e + Π′p − p) ≥ 1′o(i)e > 0.

Suppose that pi < p̄i , hence, o(i) 6= ∅ contains a node m with
Cm > 0 and there is a path i → i1 → ...→ m; assume wlg that m
is the 1st node with strictly positive equity value. If i1 = m, then
there is an immediate contradiction: since

em +
∑
j

Πjmpj − L̃m = Cm = em +
∑
j

Πjmp̄j − L̃m,

we get the equality
∑

j Πjm(p̄j − pj) = 0, impossible because the

ith term of the sum is strictly positive. If C i1 = 0, then

e i1 +
∑
j

Πji1pj − pi1 = 0 = e i1 +
∑
j

Πji1 p̄j − p̄i1 = 0,

implying that p̄i1 − pi1 =
∑

j Πji1(p̄j − pj) > 0.

That is, the strict inequality pi < p̄i propagates along the path.
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Computing the clearing vectors

We know how to solve the linear equation p = e + Π′p by the
Gauss elimination variable algorithm. To solve the non-linear
equation p = (e + Π′p) ∧ L̃ we proceed as follows. Let us consider
the set of indices D := {i : e i + (Π′L̃)i < L̃i}. If D = ∅, then
p = L̃ is the solution. Let D 6= ∅. We can assume wlg that the
index 1 ∈ D. The first equation is linear :

p1 = e1 +
∑
j

Πjipi .

If Π11 6= 1 we solve the equation and substitute the expression for
p1 into all other equations thus reducing the problem exactly as in
the Gauss algorithm. In the case P11 = 1 one can take p1

arbitrarily from [0, L̃] ; moreover, we obtain that pj = 0 for
Πj1 > 0. In this case, again the problem is reduced to the same one
but in lower dimension.

Yuri Kabanov Clearing in Financial Networks 8 / 24



Rogers–Veraart model 5

An extension of the EN model where the clearing vectors are
solutions of the non-linear equation :

p = (I − Λ)L̃ + Λ(αe + βΠ′p)=: f (p),

where Λ = Λ(p) := diagD with D := {i : e i + (Π′p)i < L̃i}. The
parameters α, β ∈]0, 1] serves to express the default losses. If the
ith bank fails the amount (1− α)e i + (1− β)(Π′p)i is used to
cover the liquidation expenditures. The EN model corresponds to
the case α = β = 1.
The function f : [0, L̃]→ [0, L̃] is monotone the Knaster–Tarski
theorem ensures the existence of the clearing vectors p and p̄.
The model is used to study effects of merging and rescue
consortium.

5. Rogers L.C.G., Veraart L.A.M. Failure and rescue in an interbank network.
Management Science, 2013.
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Greatest Clearing Vector Algorithm

This is a recursively defined sequence p0 := L̃,

pn+1 := (I − Λn)L̃ + Λnp̂n+1, n ≥ 0,

where Λn := diag 1Dn with Dn := {i ≤ N : e i + (Π′pn)i < L̃i}, and
p̂n+1 is the maximal solution in [0,Λnpn] of the linear equation

p = Λn

(
αe + βΠ′(I − Λn)L̃ + βΠ′Λnp

)
=: ln(p).

This sequence is well-defined and decreasing. The proof uses the
Knaster–Tarski theorem.

Proposition

There exists n0 ≤ N + 1 such that pn = p̄ for all n ≥ n0.

But the Gauss elimination algorithm also works...
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The Suzuki–Elsinger model with crossholdings 6

Crossholdings are given by a substochastic matrix Θ = (θij) where
θij ∈ [0, 1] is a share of the bank i held by the bank j . Assume that

H. There is no subset A ⊆ {1, . . . ,N} such that 1′AΘ = 1′A.

Equivalently : 1 is not an eigenvalue of Θ.

The problem is to find the set of solutions Γ1 ⊆ [0, L̃]× RN
+ of

p = (e + Π′p + Θ′V )+ ∧ L̃,

V = (e + Π′p − p + Θ′V )+.

For (p,V ) ∈ Γ1 the components p and V are called, respectively,
clearing vector and equity.

No monotonicity, but Brouwer is OK. What is the equity ?

6. Elsinger H. Financial networks, cross holdings, and limited liability. Working
paper from Oesterreichische Nationalbank, 2009.
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We introduce the systems

p = (e + Π′p + Θ′U)+ ∧ L̃,

U = (e + Π′p − L̃ + Θ′U)+.

with the set of solutions Γ2 ⊆ [0, L̃]× RN
+ and the system

p = (e + Π′p + Θ′W +)+ ∧ L̃,

W = e + Π′p − L̃ + Θ′W +.

with the set of solutions Γ3 ⊆ [0, L̃]× RN .

Lemma

Γ1 = Γ2 = ϕ(Γ3) where ϕ(x , y) := (x , y +).

Lemma

For any x ∈ RN the equations v = (x + Θ′v)+, and w = x + Θ′w +, have
unique solutions v = v(x) ∈ RN

+ and w = w(x) ∈ RN .
The mappings x 7→ v(x) and x 7→ w(x) are monotone, positive
homogeneous, convex, and Lipschitz.
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Theorem

Suppose that for any subset of indices A such that for all i ∈ A∑
j∈A

Θij = 1 or
∑
j∈A

Πij = 1

it holds that ∑
i∈A

e i >
∑
i∈A

(
1−

∑
j∈A

Πij
)

L̃i .

Then the clearing vector is unique. In particular, for the
Eisenberg–Noe model where Θ = 0, if any subset of indices A such
that

∑
j∈A Πij = 1 for all i ∈ A we have that

∑
i∈A e i > 0, then

the clearing vector is unique.
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The Elsinger model with debts of different seniority

The debt structure is defined matrices L1 = (Lij
1 ), ..., LM = (Lij

M)
representing liabilities with decreasing seniority.
The relative liabilities for the seniority S are defined by the matrix

Πij
S = Lij

S/L̃i
S , if L̃i

S 6= 0, and Πij
S = δij otherwise.

The clearing requires full reimbursement of debts starting from the
highest priority and, for each seniority, the distribution is
proportional to the volume of debts of this seniority. For the bank i
we denote by pi

S the value distributed to cover debts of seniority S .
The clearing is described by vectors pi

S , S ≤ M, which can be
considered as a “long” vector in (RN)M such that

pi
1 = min

{
e i +

∑
S

∑
j

Πji
Spj

S , L̃
i
1

}
,

pi
S = min

{(
e i +

∑
S

∑
j

Πji
Spj

S −
∑
r<S

L̃i
r

)+
, L̃i

S

}
, 1 < S ≤ M.
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Existence of fixed points

In a vector form these equations can be written as follows :

pS =
(

e +
∑
S

Π′SpS −
∑
r<S

L̃r

)+
∧ L̃S , S = 1, ...,M.

For the componentwise partial ordering in (RN)M the function

(p1, ..., pM) 7→

((
e+
∑
S

Π′Sp∗S

)+

∧L̃1, ...,
(

e+
∑
S

Π′Sp∗S−
∑
r<M

L̃r

)+

∧LM

})

is a monotone mapping of the order interval
[0, L̃1]× ...× [0, L̃M ] ⊂ (RN)M into itself. By the Knaster–Tarski
theorem the set of fixed points of this mapping, i.e. the solutions
of the above equation, is non-empty and has the maximal and the
minimal elements.
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For maximal clearing vector p̄ we define the default index d i of the
node i as the smallest r such that

p̄i
r = e i +

∑
S

∑
j

Πji
S p̄j

S −
∑
r ′<r

L̃i
r ′ .

That is, d i is the lowest seniority for which the ith bank equity
after clearing is equal to zero. Define the matrix ∆ = ∆(p) by
putting ∆ij = 1 if Πij

d(i) > 0, and ∆ij = 0 otherwise. We use the

notation i  j if ∆ij = 1 and denote by O(i) the ∆-orbit of i , that
is the set of all j for which there is a directed path
i  i1  i2  ... j .

Theorem

Suppose that for the clearing vector p̄ any ∆-orbit is a surplus set.
Then the clearing vector is unique.

Proof. Recall that the default index
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d i := min
{

r : p̄i
r = e i +

∑
S

∑
j Πji

S p̄j
S −

∑
r ′<r L̃i

r ′

}
.

It follows that p̄i
r = 0, hence, pi

r
= 0 for every r > d i . Suppose

that pi
r
< p̄i

r and consider a path i  i1  i2  ... m ending up
at the node with strictly positive equity value.
First, we show that at least for one seniority pi1

S
< p̄i1

S .

Let r ′ := d i1 . By definition, p̄i1
r = L̃i1

r , r ≤ r ′, and p̄i1
r = pi1

r
= 0,

r > r ′. The claim holds, if pi1
r
< L̃i1

r for some r < r ′. Consider the

case where pi1
r

= p̄i1
r = L̃i1

r for all r < r ′ and prove that pi1
r ′
< p̄i1

r ′ .

Either pi1
r ′
< p̄i1

r ′ ≤ L̃i1
r (what we need), or pi1

r ′
= p̄i1

r ′ ≤ L̃i1
r . The 2nd

case is impossible, since the equalities

p̄i1
r ′ = e i1 +

∑
S

∑
j

Πji1
S p̄j

S −
∑
r<r ′

L̃i1
r ,

pi1
r ′

= e i1 +
∑
S

∑
j

Πji1
S pj

S
−
∑
r<r ′

L̃i1
r .

leads to a contradiction
p̄i1
r ′ − pi1

r ′
=
∑

S

∑
j Πji1

S (p̄j
S − pj

S) ≥ Πii1
r (p̄i

r − pi
r
) > 0.
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The Fisher model: clearing with derivatives 7

It is a generalization of the Elsinger–Suzuki model covering systems
where banks, besides of straight debts, may have liabilities in terms
of derivatives having different seniorities. This means that matrices
LS may depend on the clearing vectors. The equations are:

pS =
(

e + Θ′V +
∑
r≤M

Π′rpr −
∑
r<S

L̃r (p)
)+

∧ L̃S(p), S = 1, ...,M,

V =
(

e + Θ′V +
∑
r≤M

Π′rpr −
∑
S

pS

)+

.

Now the matrices ΠS become input parameters of the model.

Theorem

Suppose that the functions p 7→ LS(p) are bounded and
continuous, |Θ| < 1. Then the system has a solution.

7. Fischer T. No arbitrage pricing under systemic risk : accounting for cross-
ownership. Math. Finance, 2014.
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Theorem

Suppose that e ≥ 0, the functions p 7→ LS(p) are continuous, and
|Θ| < 1, |ΠS | < 1 for all S. Then the system has a solution.

Theorem

In addition to the assumptions of preceding theorem suppose that

L̃i
r (p) = ψi

r

( ∑
r≤M+1

(Π′rpr )
i
)

where ψi
r : R+ 7→ R+ are increasing functions such that for any

u, v ∈ R+ such that v ≥ u we have the bound

v − u ≥
∑
r≤M

(
ψi
r (v)− ψi

r (u)
)
, i = 1, . . . ,N.

Then the system has a unique solution.
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Models with illiquid assets and a price impact (gAFM)

The bank i owns cash e i and K illiquid assets, in quantities
y i1, . . . y iK represented in the model by the row i of the matrix
Y = (y im), i ≤ N, m ≤ K . The nominal prices per unit are
Q1, ...,QK > 0. The clearing may require sales. If uim ∈ [0, y im]
units of the m-th assets for the price qm are sold, the increase in
cash is

(Uq)i =
K∑

m=1

uimqm.

The price formation is modeled by the inverse demand function
F0 : RK → RK , continuous and monotone decreasing
(F0(z) ≤ F0(x) when z ≥ x in the sense of partial ordering in RK

+)
and such that F0(0) = Q and Fm

0 (Y ′1) > 0 for m = 1, . . .K .
The clearing rules : each bank pays debts in accordance to the
matrix of liabilities and sells illiquid assets if it is needed. All debts
should be covered or bank’s equity falls down to zero.
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Equilibrium

The important question is what are strategies for the banks ?
We suppose that all assets are sold in equal proportions. More
precisely, the ith bank sells uim units of the mth asset where

uim := uim(p, q) :=
y im
(

L̃i − e i −
∑

j Πjipj
)+∑

k y ikqk
∧ y im.

The total supply of the illiquid assets is the vector 1′U(p, q) where
U(p, q) = (uim).
Define the equilibrium vector (p∗, q∗) ∈ [0, L̃]× [F0(1Y ),Q] as the
solution of the system of N + K equations

p = (e + U(p, q)q + Π′p) ∧ L̃=: F (p, q), (1)

q = F0(U ′(p, q)1). (2)

The existence follows because (p, q) 7→ (F (p, q),F0(U ′(p, q)1) is a
monotone mapping of the interval [0, L̃]× [F0(1Y ),Q] into itself.
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The set of its fixed points contains the minimal and maximal
elements (p∗, q∗) and (p̄∗, q̄∗).
For a fixed q the function p → F (p, q) is monotone and the set of
solutions (1) contains the maximal element p̄(q).
For a fixed q ∈ [F0(Y ),Q] the largest solution p̄ = p̄(q) of (1) is

p̄ = sup{p ∈ [0, L̃] : p ≤ (e + U(p, q)q + Π′p) ∧ L̃}

implying that q 7→ p̄(q) is an increasing (and continuous) function
on [F0(Y ),Q]. It follows that the supply function

q 7→ ζ(q) := U ′(p̄(q), q)1

is decreasing and, therefore, the q 7→ F0(ζ(q)) is an increasing (and
continuous) mapping of the interval [F0(Y ),Q] into itself and,
therefore, it has the minimal and maximal fixed points q1 and q2.

Lemma

If the function x → x ′F0(x) is strictly increasing on [F0(Y ),Q],
then the solution of q = F0(ζ(q)) is unique, i.e. q1 = q2.
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Theorem

Suppose that the scalar function x → x ′F0(x) is strictly increasing
on [F0(Y ),Q]. Then there is q∗ such that the set of solutions of
the system (1), (2) is contained in the interval with the extremities
(p(q∗), q∗) and (p̄(q∗), q∗). In particular, if for each q the solution
of (1) is a unique, then the solution of the system is also unique.

Proof. Let Γ be the set of q for which (p, q) is a solution of the
system (1), (2). If q∗ ∈ Γ, then (p̄(q∗), q∗) is the solution of (1),
(2). Accordingly to the above lemma the point q∗ is uniquely
defined. This implies the result.
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