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Game options
Definition

Derivative contracts, introduced by Kifer in 2000, which can be
terminated by both counterparties at any time before maturity T .

extend the setup of American options by allowing the seller to cancel
the contract

If the buyer exercises at time τ , he gets ξτ from the seller,

but if the seller cancels at σ before τ , he pays ζσ ≥ ξσ to the buyer.

In short, if the buyer exercises at a stopping time τ ≤ T and the seller
cancels at a stopping time σ ≤ T , then the seller pays to the buyer the
payoff ξτ1τ≤σ + ζσ1τ>σ at terminal time τ ∧ σ.

The difference ζt − ξt for all t and is interpreted as a penalty for the seller
for cancellation of the contract.
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Game options
Kiefer’s result

In the case of perfect markets, Kifer introduces the fair price u0 of the
game option, as the minimum initial wealth for the seller to cover his
liability to pay the payoff to the buyer until a cancellation time, whatever
the buyer’s exercise time.

He shows both in the CRR discrete-time and Black-Scholes model (with ξ
and ζ continuous), that u0 is equal to the value function of a Dynkin game:

u0 = sup
τ

inf
σ
EQ [ξ̃τ1τ≤σ + ζ̃σ1τ>σ] = inf

σ
sup
τ

EQ [ξ̃τ1τ≤σ + ζ̃σ1τ>σ],

where ξ̃t and ζ̃t are the discounted values of ξt and ζt , and Q is the
unique martingale probability measure.
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Our goal

1 Study game options (pricing and superhedging) in the case of
imperfections in the market taken into account via the nonlinearity
of the wealth dynamics.
We moreover include the possibility of a default and irregular payoffs
(RCLL only).

2 Study game options under model uncertainty, in particular
ambiguity on the default probability.
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Financial market with default

Let (Ω,G,P) be a complete probability space.
Consider a market with three assets with price process S = (S0,S1, S2):

dS0
t = S0

t rtdt

dS1
t = S1

t [µ1
tdt + σ1

t dWt ]

dS2
t = S2

t− [µ2
tdt + σ2

t dWt − dMt ],

W is a unidimensional standard Brownian motion

Mt = Nt −
∫ t

0 λsds is the compensated martingale of the jump process
Nt := 1ϑ≤t , t ∈ [0,T ], where ϑ is a r. v. modeling a default time.
This default can appear at any time, i.e. P(ϑ ≥ t) > 0 ∀t ∈ [0,T ].

Let G = {Gt , 0 ≤ t ≤ T} the augmented filtration generated by W and N.
Suppose W is a G-Brownian motion.
Process S2 is the price of a defaultable asset with total default. Vanishes after ϑ.

σ1, σ2, r , µ1, µ2 predictable; σ1, σ2 > 0; r , σ1, σ2, µ1, µ2, λ, λ−1,(σ1)
−1

, (σ2)
−1

bounded.
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Option pricing in the perfect market case

Consider an investor with initial wealth x and risky asset strategy
ϕ = (ϕ1, ϕ2). Let V x ,ϕ

t the value of the portfolio at time t.

Self financing condition:

dVt = (rtVt + ϕ1
tσ

1
t θ

1
t − ϕ2

t θ
2
t λt)dt + ϕ′tσtdWt − ϕ2

tdMt ,

where θ1
t := (µ1

t − rt)(σ1
t )−1 ; θ2

t := −(µ2
t − σ2

t θ
1
t − rt)λ

−1
t 1{t≤ϑ}.

Consider a European option with maturity T and payoff ξ in L2(GT ).

The unique solution (X ,Z ,K ) ∈ S2 ×H2 ×H2
λ of the λ-linear BSDE (DQS’16)

−dXt = −(rtXt + (Zt +σ2
tKt)θ

1
t +Ktθ

2
t λt)dt −ZtdWt −KtdMt ; XT = ξ.

provides the replicating portfolio : ϕt
′σt = Zt ; −ϕ2

t = Kt .

This defines a change of variables:

Φ(Z ,K ) := ϕ = (ϕ1, ϕ2) with ϕ2
t = −Kt ;ϕ

1
t = (Zt + σ2

tKt)(σ1
t )−1.
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X = X (ξ) coincides with V X0,ϕ, the value of the (hedging) portfolio
associated with initial wealth x = X0 and portfolio strategy ϕ. We have:

Xt(ξ) = E[e−
∫ T
t rsdsζt,T ξ | Gt ],

where ζ satisfies

dζt,s = ζt,s− [−θ1
s dWs − θ2

s dMs ]; ζt,t = 1,

with θ1
t := (µ1

t − rt)(σ1
t )−1 ; θ2

t := −(µ2
t − σ2

t θ
1
t − rt)λ

−1
t 1{t≤ϑ}.

This defines a linear price system X : ξ 7→ X (ξ).

When θ2
t < 1, 0 ≤ t ≤ ϑ dt ⊗ dP-a.s. Then ζt,· > 0.

The probability Q which admits ζ0,T as density on GT , is the unique
martingale probability measure.
In this case, the price system X is increasing and corresponds to the
classical free-arbitrage price system.
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The imperfect market model Mg

Consider now the case of imperfections in the market taken into account
via the nonlinearity of the dynamics of the wealth V x ,ϕ

t :

−dVt = g(t,Vt , ϕt
′σt ,−ϕ2

t )dt − ϕt
′σtdWt + ϕ2

tdMt , V0 = x

or equivalently, setting Zt = ϕt
′σt and Kt = −ϕ2

t ,

−dVt = g(t,Vt ,Zt ,Kt)dt − ZtdWt − KtdMt .

In a perfect market, g(t, x , z , k) = −rtx − (z + σ2
t k)θ1

t − θ2
t λtk.

Here g is a nonlinear λ-admissible driver, i.e. measurable, g(., 0, 0, 0) ∈ H2,

|g(ω, t, y1, z1, k1)−g(ω, t, y2, z2, k2)| ≤ C (|y1−y2|+|z1−z2|+
√
λt |k1−k2|).
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Examples of market imperfections

Different borrowing and lending interest rates Rt and rt with Rt ≥ rt

g(t,Vt , ϕ
′
tσt ,−ϕ2

t ) := −(rtVt +ϕ1
t θ

1
t σ

1
t −ϕ2

tλtθ
2
t )+(Rt−rt)(Vt−ϕ1

t −ϕ2
t )−,

where ϕ2
t vanishes after ϑ.

Large investor seller whose trading strategy ϕt affects the market

g(t,Vt , ϕtσt ,−ϕ2
t ) := −r̄(t,Vt , ϕt)Vt−ϕ1

t (θ̄1σ̄1)(t,Vt , ϕt)+ϕ2
tλt θ̄

2(t,Vt , ϕt).

Taxes on risky investments profits

g(t,Vt , ϕtσt ,−ϕ2
t ) := −(rtVt + ϕ1

t θ
1
t σ

1
t − ϕ2

t θ
2
t λt) + ρ(ϕ1

t + ϕ2
t )+.

Here, ρ ∈ ]0, 1[ represents an instantaneous tax coefficient.
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Nonlinear pricing in the imperfect market Mg

Consider a European option with maturity T and terminal payoff
ξ ∈ L2(GT ). ∃! (X ,Z ,K ) in S2 ×H2 ×H2

λ solution of the BSDE

−dXt = g(t,Xt ,Zt ,Kt)dt − ZtdWt − KtdMt ; XT = ξ.

The process X is equal to the wealth process associated with initial value
x = X0 and strategy ϕ = Φ(Z ,K ), that is X = V X0,ϕ.

Its initial value X0 = X0(T , ξ) is thus a sensible price at time 0 for the seller of

the claim ξ since it allows him to construct a hedging strategy ϕ s.t. the value of

the associated portfolio is equal to ξ at time T . Similarly for Xt = Xt(T , ξ) and

it is the unique price which satisfying the hedging property.

This leads to a nonlinear pricing system, first introduced in NEK-Quenez’96 in
Brownian framework, later called g -evaluation and denoted by Eg :
∀S ∈ [0,T ], ∀ξ ∈ L2(GS)

Egt,S(ξ) := Xt(S , ξ), t ∈ [0,S ].
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To ensure (strict) monotonicity and the no arbitrage property of the
nonlinear pricing system Eg , we assume

g(t, x , z , k1)− g(t, x , z , k2) ≥ γx ,z,k1,k2
t (k1 − k2)λt ,

with γy ,z,k1,k2
t > −1.

This is satisfied e.g. if g is non-decreasing wrt k, or if g is C1 in k with
∂kg(t, ·) > −λt . on {t ≤ ϑ}.

In the special case of perfect market, ∂kg(t, ·) = −θ2
t , and this

Assumption is equivalent to θ2
t < 1, the usual assumption.
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Game options in the imperfect market Mg

Definition

The game option consists for the seller to select a cancellation time σ ∈ T
and for the buyer an exercise time τ ∈ T , so that the seller pays to the
buyer at time τ ∧ σ the payoff

I (τ, σ) := ξτ1τ≤σ + ζσ1σ<τ .

Assumptions: ξ, ζ : adapted RCLL processes in S2 with ζT = ξT ;
ξt ≤ ζt , 0 ≤ t ≤ T a.s. satisfying Mokobodzki’s condition:
∃ two nonnegative RCLL supermartingales H and H ′ in S2 such that:

ξt ≤ Ht − H ′t ≤ ζt 0 ≤ t ≤ T a.s.

(holds e.g. when ξ or ζ is a semimartingale satisfying some integrability

conditions).
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Game options in the imperfect market Mg

Definition 1: For each initial wealth x , a super-hedge against the game
option is a pair of stopping time σ and portfolio strategy ϕ ∈ H2 ×H2

λ s.t.

V x ,ϕ
t ≥ ξt , 0 ≤ t ≤ σ a.s. and V x ,ϕ

σ ≥ ζσ a.s.

Definition 2: Define the seller’s price of the game option as

u0 := inf{x ∈ R, ∃(σ, ϕ) ∈ S(x)},

where S(x) is the set of all super-hedges associated with initial wealth x .
If inf is attained, u0 is called the super-hedging price.

Definition 3: We define the g-value of the game option as

inf
σ∈T

sup
τ∈T
Eg0,τ∧σ[I (τ, σ)].
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Game options in the imperfect market Mg

Main results (1/2)

The seller’s price u0 of the game option is equal to the g-value.

Steps:

1 The g -value is equal to the value of the generalized Dynkin game

inf
σ∈T

sup
τ∈T
Eg0,τ∧σ[I (τ, σ)] = sup

τ∈T
inf
σ∈T
Eg0,τ∧σ[I (τ, σ)].

2 This value is equal to Y0, where (Y ,Z ,K ,A,A′) is the unique
solution in S2 ×H2 ×H2

λ ×A2 ×A2 of the Doubly Reflected BSDE
associated with barriers ξ and ζ and driver g .

3 u0 = Y0.
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Game options in the imperfect market Mg

Associated Doubly Reflected BSDE

−dYt = g(t,Yt ,Zt ,Kt)dt + dAt − dA
′
t − ZtdWt − KtdMt ; YT = ξT ,

(i) ξt ≤ Yt ≤ ζt , 0 ≤ t ≤ T a.s.,

(ii) dAt ⊥ dA′t (the measures are mutually singular)

(iii)

∫ T

0
(Yt − ξt)dAc

t = 0 a.s. and

∫ T

0
(ζt − Yt)dA

′c
t = 0 a.s.

∆Ad
τ = ∆Ad

τ 1{Yτ−=ξτ−} and ∆A
′d
τ = ∆A

′d
τ 1{Yτ−=ζτ−}a.s. ∀τ ∈ T predictable.

A2 = {nondecreasing RCLL predictable proc. A with A0 = 0 and E(A2
T ) <∞}

if ξ (resp.−ζ) is left-u.s.c. along stopping times, then A (resp. A′) is continuous.
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Game options in the imperfect market Mg

Main results (2/2)

When ζ is left l.s.c along stopping times (and ξ only RCLL), the
seller’s price u0 := inf{x ∈ R, ∃(σ, ϕ) ∈ S(x)} is the super-hedging price
(inf = min). Let

σ∗ := inf{t ≥ 0, Yt = ζt} and ϕ∗ := Φ(Z ,K ).

The pair (σ∗, ϕ∗) is a super-hedge for the initial capital u0.

When ζ only RCLL, may not exist a super-hedge. However ∀ε > 0 let

σε := inf{t ≥ 0 : Yt ≥ ζt − ε} and ϕ∗ := Φ(Z ,K ).

The pair (σε, ϕ
∗) is an ε-super-hedge for the initial capital u0, i.e.

V Y0,ϕ
∗

t ≥ ξt , 0 ≤ t ≤ σε a.s. and V Y0,ϕ
∗

σε ≥ ζσε − ε a.s.

The seller is completely hedged before σε and hedged up to ε at

cancellation time σε
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Game options with model uncertainty
Market model with uncertainty

Let U be a nonempty closed subset of R and U be the set of U-valued
predictable processes.

To each α ∈ U is associated a market model Mα, where the wealth
process V α,x ,ϕ associated with initial wealth x and stategy ϕ satisfies

−dV α,x ,ϕ
t = G (t,V α,x ,ϕ

t , ϕtσt ,−ϕ2
t , αt)dt − ϕtσtdWt + ϕ2

tdMt

where G is uniformly λ- admissible and satisfies the monotonicity
conditions.

In the market model Mα, the nonlinear pricing system is given by Egα ,
associated with driver gα(t, ω, y , z , k) := G (t, ω, y , z , k , αt(ω)).
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Game options with model uncertainty
Robust superhedging

Definition 1: For given initial wealth x , a robust super-hedge is a pair
(σ, ϕ) of a stopping time σ and a portfolio ϕ such that for all α ∈ U , we
have

V α,x ,ϕ
t ≥ ξt , 0 ≤ t ≤ σ a.s. and V α,x ,ϕ

σ ≥ ζσ a.s.

Definition 2: Define the robust seller’s price as

u0 := inf{x ∈ R, ∃(σ, ϕ) ∈ Sr (x)},

where Sr (x) is the set of all robust super-hedges associated with wealth x .

if inf is attained, u0 is called the robust super-hedging price.
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Game options with model uncertainty
Dual problem

Let α ∈ U . The seller’s price of the game option in the market Mα is
characterized as its gα-value (= infσ∈T supτ∈T E

gα

0,τ∧σ[I (τ, σ)])

Moreover, it is equal to Y α
0 , where (Y α,Zα,Kα,Aα,A

′α) is the unique
solution in S2 ×H2 ×H2

λ ×A2 ×A2 of the Doubly Reflected BSDE
associated with driver gα and barriers ξ and ζ.

We introduce a dual problem associated to the seller’s super-hedging
problem

v0 := sup
α∈U

Y α
0 .
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Game options with model uncertainty
Main results (1/2)

The robust seller’s price u0 = dual value function v0.
Steps:

1 v0 := supα∈U Y
α
0 is the value of the mixed generalized Dynkin game:

v0 = sup
α∈U

inf
σ∈T

sup
τ∈T
Eg

α

0,τ∧σ[I (τ, σ)] = sup
α∈U

sup
τ∈T

inf
σ∈T
Eg

α

0,τ∧σ[I (τ, σ)]. (1)

2 v0 = Y0, where (Y ,Z ,K ,A,A′) is the solution of the DRBSDE
associated with barriers ξ and ζ and driver

g(t, ω, y , z , k) := sup
α∈U

G (t, ω, y , z , k, α)

3 u0 = Y0.

Moreover, infσ and supα can be interchanged in (1). So:

u0 = sup
α∈U

inf
σ∈T

sup
τ∈T
Eg

α

0,τ∧σ[I (τ, σ)] = inf
σ∈T

sup
α∈U

sup
τ∈T
Eg

α

0,τ∧σ[I (τ, σ)].
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Game options with model uncertainty
Main results (2/2)

When ζ is left l.s.c along stopping times (and ξ only RCLL), the
robust seller’s price u0 is the robust super-hedging price (inf = min).
Let σ∗ := inf{t ≥ 0, Yt = ζt} and ϕ∗ := Φ(Z ,K ). The pair (σ∗, ϕ∗)
is a robust super-hedge for the initial capital u0.

If U compact, ∃ᾱ ∈ U s.t. the robust superhedging price = the

superhedging price in Mᾱ, i.e. u0 = Y ᾱ
0 , and ᾱ is a worst case scenario.

When ζ is only RCLL, there may not exist a robust super-hedge.
However, ∀ε > 0, let σε := inf{t ≥ 0 : Yt ≥ ζt − ε}. The pair
(σε, ϕ

∗) is an ε-robust super-hedge, i.e. ∀α ∈ U ,

V α,Y0,ϕ
∗

t ≥ ξt , 0 ≤ t ≤ σε a.s. and V α,Y0,ϕ
∗

σε ≥ ζσε − ε a.s.

(INRIA, Mathrisk) 21 / 30



Proof: based on properties (comparison thms, estimates, optimization
principles...) on BSDEs and DRBSDEs and the characterization of the
value of generalized Dynkin games in terms of nonlinear Doubly Reflected
BSDEs (Dumitrescu-Quenez-Sulem, EJP(2016)).
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Example with ambiguity on the default probability

Consider a family of probability measures Qα, equivalent to P, which
admits ZαT as density with respect to P, with

dZαt = Zαt γ(t, αt)dMt ; Zα0 = 1,

where γ bounded and γ(t, α) > C1 > −1.
Under Qα, Mα

t := Nt −
∫ t

0 λs(1 + γ(s, αs))ds is a G-martingale and
γ(t, αt) represents the uncertainty on the default intensity.

To each α, corresponds a market model Mα in which the wealth satisfies

−dV α,x ,ϕ
t = f (t,V α,x ,ϕ

t , ϕ′tσt ,−ϕ2
t )dt − ϕ′tσtdWt + ϕ2

tdM
α
t ; V α,x ,ϕ

0 = x ,

where f is λ-admissible.
There exists an unique solution (Xα,Zα,Kα) of the following Qα-BSDE:

−dXα
t = f (t,Xα

t ,Z
α
t ,K

α
t )dt − Zαt dWt − Kα

t dM
α
t ; Xα

T = ξ.

The nonlinear price system E fQα in Mα, is thus the f -evaluation under Qα.
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Since Mα
t = Mt −

∫ t
0 λsγ(s, αs)ds, the dynamics of the wealth in the

market model Mα can be written as follows:

−dV α,x ,ϕ
t = −λtγ(t, αt)ϕ

2
tdt+f (t,V α,x ,ϕ

t , ϕtσt ,−ϕ2
t )dt−ϕtσtdWt+ϕ

2
tdMt .

This corresponds to our model with uncertainty where G is given by:

G (t, ω, y , z , k , α) := λt(ω)γ(t, ω, α)k + f (t, ω, y , z , k).

Proposition The seller’s robust price of the game option in this model
admits the following dual representation:

u0 = sup
α∈U

inf
σ∈T

sup
τ∈T
E fQα,0,τ∧σ[I (τ, σ)] = inf

σ∈T
sup
α∈U

sup
τ∈T
E fQα,0,τ∧σ[I (τ, σ)].

Let g be the map defined for each (t, ω, z , k) by

g(t, ω, y , z , k) := sup
α∈U

(λt(ω)γ(t, ω, α)k + f (t, ω, y , z , k)) .

We have u0 = Y0, where Y is the solution of the P-DRBSDE associated
with driver g and barriers ξ and ζ.
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Buyer’s point of view
European option

Consider a European option with maturity T and payoff ξ ∈ L2(GT ). The
buyer’s price of the option is equal to the opposite of the seller’s price of
the option with payoff −ξ:

Ẽ g

·,S(ξ) := −E g

·,S(−ξ) = −X·(T ,−ξ).

Indeed, setting X̃0 := X0(T ,−ξ) and ϕ̃ = Φ(Z (T ,−ξ),K (T ,−ξ)), we

have V X̃0,ϕ̃
T + ξ = 0 a.s.

Hence, if the initial price of the option is −X̃0, he starts with X̃0 at t = 0 and

following the strategy ϕ̃, the payoff he receives at T allows him to recover the

debt he incurred at t = 0 by buying the option.

The strategy ϕ̃ is thus the hedging strategy for the buyer.

In the case of a perfect market, the dynamics of the wealth X are linear
wrt (X , ϕ), and the associated g -evaluation Eg is linear, so Ẽ g

= E g
.
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Buyer’s point of view - Game option

Supposing the initial price of the game option is z , the buyer starts with −z at

t = 0, and searches a super-hedge, i.e. an exercise time τ and a strategy ϕ, s.t.

the payoff that he receives allows him to recover the debt he incurred at t = 0 by

buying the game option, no matter the cancellation time chosen by the seller:

Definition 1

A buyer’s super-hedge against the game option with payoffs (ξ, ζ) and initial price
z ∈ R is a pair (τ, ϕ) of a stopping time τ and a strategy ϕ such that

V−z,ϕt ≥ −ζt , 0 ≤ t < τ a.s. and V−z,ϕτ ≥ −ξτ a.s.

Let Bξ,ζ(z): set of buyer’s super-hedges against the game option with payoffs
(ξ, ζ) associated with initial price z ∈ R.

The first inequality also holds at t = τ because ξ ≤ ζ. It follows that

Bξ,ζ(z) = S−ζ,−ξ(−z), where S−ζ,−ξ(−z) is the set of seller’s super-hedges

against the game option with payoffs (−ζ,−ξ) associated with initial capital −z .
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Definition 2

The buyer’s price ũ0 of the game option is defined as the supremum of the
initial prices which allow the buyer to be super-hedged, that is

ũ0 := sup{z ∈ R, ∃(τ, ϕ) ∈ Bξ,ζ(z)}.

Using the Remark, we derive that

−ũ0 = inf{x ∈ R, ∃(τ, ϕ) ∈ S−ζ,−ξ(x)},

which gives the following result:

Theorem 3

The buyer’s price of the game option with payoffs (ξ, ζ) is equal to the
opposite of the seller’s price of the game option with payoffs (−ζ,−ξ).

In the special case of a perfect market, the buyer’s price is equal to the
seller’s price .
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Buyer’s point of view
Game option with model ambiguity

Definition 4

For a given initial wealth z ∈ R, a buyer robust super-hedge against the game
option with payoffs (ξ, ζ) is a pair (τ, ϕ) of a stopping time τ ∈ T and a
risky-assets strategy ϕ ∈ H2 ×H2

λ such that

V α,−z,ϕ
t ≥ −ζt , 0 ≤ t < τ a.s. and V α,−z,ϕ

τ ≥ −ξτ a.s. , ∀α ∈ U .

The buyer’s robust price of the game option is defined as the supremum of the
initial prices which allow the buyer to construct a robust superhedge:

ũ0 := sup{z ∈ R, ∃(τ, ϕ) ∈ Brξ,ζ(z)}.

where Brξ,ζ(z) the set of all buyer’s robust super-hedges against the game option
with payoffs (ξ, ζ) associated with initial price z ∈ R.
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Theorem 5

The buyer’s robust price of the game option with payoffs (ξ, ζ) is equal to
the opposite of the seller’s robust price of the game option with payoffs
(−ζ,−ξ).

We thus have the following dual formulation of the buyer’s robust price:

ũ0 = inf
α∈U

sup
τ∈T

inf
σ∈T
Ẽg

α

0,τ∧σ[I (τ, σ)] = inf
α∈U

inf
σ∈T

sup
τ∈T
Ẽg

α

0,τ∧σ[I (τ, σ)].

The buyer’s robust price ũ0 is thus equal to the infimum over α ∈ U of the
buyer’s prices in Mα.
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Conclusion/Summary

1 We have studied game options (pricing and superhedging issues) in a
financial market with default and imperfections taken into account via
the nonlinearity of the wealth dynamics.
We proved that the seller’s price of a game option coincides with the
value function of a corresponding generalized Dynkin game with
g -evaluation. Links with associated DRBSDE also provide the (ε)-
superhedging strategy.

2 We have also studied these issues in the case of model uncertainty,
in particular ambiguity on the default probability, and characterize the
seller’s price of a game option with model uncertainty as the value
function of a mixed generalized Dynkin game.

Our approach relies on links between generalized (mixed) Dynkin games
and doubly reflected BSDEs, and their properties.

Thank you for your attention !
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