Game options in an imperfect financial market with default and model uncertainty

Agnès Sulem

INRIA Paris Equipe-Projet MATHRISK

Informatics mathematics

Advances in Financial Mathematics Paris, January 13rd 2017

joint work with Roxana Dumitrescu (King's College, London) & Marie-Claire Quenez (Université Paris-Diderot)

(INRIA, Mathrisk) 1 / 30

Game options

Definition

- Derivative contracts, introduced by Kifer in 2000, which can be terminated by both counterparties at any time before maturity T.
- extend the setup of American options by allowing the seller to cancel the contract
- If the buyer exercises at time τ , he gets ξ_{τ} from the seller,
- but if the seller cancels at σ before τ , he pays $\zeta_{\sigma} \geq \xi_{\sigma}$ to the buyer.

In short, if the buyer exercises at a stopping time $\tau \leq T$ and the seller cancels at a stopping time $\sigma \leq T$, then the seller pays to the buyer the payoff $\xi_{\tau} \mathbf{1}_{\tau < \sigma} + \zeta_{\sigma} \mathbf{1}_{\tau > \sigma}$ at terminal time $\tau \wedge \sigma$.

The difference $\zeta_t - \xi_t$ for all t and is interpreted as a penalty for the seller for cancellation of the contract.

(INRIA, Mathrisk) 2 / 30

Game options

Kiefer's result

In the case of perfect markets, Kifer introduces the *fair price* u_0 of the game option, as the minimum initial wealth for the seller to cover his liability to pay the payoff to the buyer until a cancellation time, whatever the buyer's exercise time.

He shows both in the CRR discrete-time and Black-Scholes model (with ξ and ζ continuous), that u_0 is equal to the value function of a Dynkin game:

$$u_0 = \sup_{\tau} \inf_{\sigma} \mathbb{E}_{Q}[\tilde{\xi}_{\tau} \mathbf{1}_{\tau \leq \sigma} + \tilde{\zeta}_{\sigma} \mathbf{1}_{\tau > \sigma}] = \inf_{\sigma} \sup_{\tau} \mathbb{E}_{Q}[\tilde{\xi}_{\tau} \mathbf{1}_{\tau \leq \sigma} + \tilde{\zeta}_{\sigma} \mathbf{1}_{\tau > \sigma}],$$

where $\tilde{\xi}_t$ and $\tilde{\zeta}_t$ are the discounted values of ξ_t and ζ_t , and Q is the unique martingale probability measure.

(INRIA, Mathrisk) 3 / 30

Our goal

- Study game options (pricing and superhedging) in the case of imperfections in the market taken into account via the nonlinearity of the wealth dynamics.
 We moreover include the possibility of a default and irregular payoffs (RCLL only).
- Study game options under model uncertainty, in particular ambiguity on the default probability.

(INRIA, Mathrisk) 4 / 30

Financial market with default

Let $(\Omega, \mathcal{G}, \mathbb{P})$ be a complete probability space.

Consider a market with three assets with price process $S = (S^0, S^1, S^2)$:

$$\begin{cases} dS_{t}^{0} = S_{t}^{0} r_{t} dt \\ dS_{t}^{1} = S_{t}^{1} [\mu_{t}^{1} dt + \sigma_{t}^{1} dW_{t}] \\ dS_{t}^{2} = S_{t-}^{2} [\mu_{t}^{2} dt + \sigma_{t}^{2} dW_{t} - dM_{t}], \end{cases}$$

- W is a unidimensional standard Brownian motion
- $M_t = N_t \int_0^t \lambda_s ds$ is the compensated martingale of the jump process $N_t := \mathbf{1}_{\vartheta \leq t}$, $t \in [0, T]$, where ϑ is a r. v. modeling a default time. This default can appear at any time, i.e. $\mathbb{P}(\vartheta \geq t) > 0 \ \forall t \in [0, T]$.

Let $\mathbb{G} = \{\mathcal{G}_t, 0 \leq t \leq T\}$ the augmented filtration generated by W and N. Suppose W is a \mathbb{G} -Brownian motion.

Process S^2 is the price of a defaultable asset with total default. Vanishes after ϑ . $\sigma^1, \sigma^2, r, \mu^1, \mu^2$ predictable; $\sigma^1, \sigma^2 > 0$; $r, \sigma^1, \sigma^2, \mu^1, \mu^2, \lambda, \lambda^{-1}, (\sigma^1)^{-1}$, $(\sigma^2)^{-1}$ bounded.

(INRIA, Mathrisk) 5 / 30

Option pricing in the perfect market case

Consider an investor with initial wealth x and risky asset strategy $\varphi = (\varphi^1, \varphi^2)$. Let $V_t^{x,\varphi}$ the value of the portfolio at time t.

Self financing condition:

$$\begin{split} dV_t &= (r_t V_t + \varphi_t^1 \sigma_t^1 \theta_t^1 - \varphi_t^2 \theta_t^2 \lambda_t) dt + \varphi_t' \sigma_t dW_t - \varphi_t^2 dM_t, \\ \text{where } \theta_t^1 &:= (\mu_t^1 - r_t) (\sigma_t^1)^{-1} \; ; \quad \theta_t^2 := -(\mu_t^2 - \sigma_t^2 \theta_t^1 - r_t) \lambda_t^{-1} \, \mathbf{1}_{\{t \leq \vartheta\}}. \end{split}$$

Consider a **European option** with maturity T and payoff ξ in $L^2(\mathcal{G}_T)$.

The unique solution $(X, Z, K) \in S^2 \times \mathbb{H}^2 \times \mathbb{H}^2_{\lambda}$ of the λ -linear BSDE (DQS'16)

$$-dX_t = -(r_tX_t + (Z_t + \sigma_t^2K_t)\theta_t^1 + K_t\theta_t^2\lambda_t)dt - Z_tdW_t - K_tdM_t; X_T = \xi.$$

provides the **replicating** portfolio : $\varphi_t'\sigma_t = Z_t$; $-\varphi_t^2 = K_t$.

This defines a change of variables:

$$\Phi(Z, K) := \varphi = (\varphi^1, \varphi^2) \text{ with } \varphi_t^2 = -K_t; \varphi_t^1 = (Z_t + \sigma_t^2 K_t)(\sigma_t^1)^{-1}.$$

(INRIA, Mathrisk) 6 / 30

 $X=X(\xi)$ coincides with $V^{X_0,\varphi}$, the value of the (hedging) portfolio associated with initial wealth $x=X_0$ and portfolio strategy φ . We have:

$$X_t(\xi) = \mathbb{E}[e^{-\int_t^T r_s ds} \zeta_{t,T} \xi \mid \mathcal{G}_t],$$

where ζ satisfies

$$d\zeta_{t,s} = \zeta_{t,s^-}[-\theta_s^1 dW_s - \theta_s^2 dM_s]; \ \zeta_{t,t} = 1,$$

with
$$\theta_t^1 := (\mu_t^1 - r_t)(\sigma_t^1)^{-1}$$
; $\theta_t^2 := -(\mu_t^2 - \sigma_t^2 \theta_t^1 - r_t) \lambda_t^{-1} \mathbf{1}_{\{t \leq \theta\}}$.

This defines a *linear* price system $X: \xi \mapsto X(\xi)$.

When $\theta_t^2 < 1$, $0 \le t \le \vartheta$ $dt \otimes dP$ -a.s. Then $\zeta_{t,\cdot} > 0$.

The probability Q which admits $\zeta_{0,T}$ as density on \mathcal{G}_T , is the unique martingale probability measure.

In this case, the price system X is increasing and corresponds to the classical free-arbitrage price system.

(INRIA, Mathrisk) 7 / 30

The imperfect market model \mathcal{M}^g

Consider now the case of imperfections in the market taken into account via the *nonlinearity* of the dynamics of the wealth $V_t^{x,\varphi}$:

$$-dV_t = g(t, V_t, \varphi_t{'}\sigma_t, -\varphi_t^2)dt - \varphi_t{'}\sigma_t dW_t + \varphi_t^2 dM_t, \ V_0 = x$$

or equivalently, setting $Z_t = {arphi_t}' \sigma_t$ and $K_t = -{arphi_t^2}$,

$$-dV_t = g(t, V_t, Z_t, K_t)dt - Z_t dW_t - K_t dM_t.$$

In a perfect market, $g(t, x, z, k) = -r_t x - (z + \sigma_t^2 k) \theta_t^1 - \theta_t^2 \lambda_t k$.

Here g is a nonlinear λ -admissible driver, i.e. measurable, $g(.,0,0,0) \in \mathbb{H}^2$,

$$|g(\omega, t, y_1, z_1, k_1) - g(\omega, t, y_2, z_2, k_2)| \le C(|y_1 - y_2| + |z_1 - z_2| + \sqrt{\lambda_t} |k_1 - k_2|).$$

(INRIA, Mathrisk) 8 / 30

Examples of market imperfections

- Different borrowing and lending interest rates R_t and r_t with $R_t \geq r_t$ $g(t, V_t, \varphi_t' \sigma_t, -\varphi_t^2) := -(r_t V_t + \varphi_t^1 \theta_t^1 \sigma_t^1 \varphi_t^2 \lambda_t \theta_t^2) + (R_t r_t)(V_t \varphi_t^1 \varphi_t^2)^-,$ where φ_t^2 vanishes after ϑ .
- Large investor seller whose trading strategy φ_t affects the market

$$g(t,V_t,\varphi_t\sigma_t,-\varphi_t^2):=-\bar{r}(t,V_t,\varphi_t)V_t-\varphi_t^1(\bar{\theta}^1\bar{\sigma}^1)(t,V_t,\varphi_t)+\varphi_t^2\lambda_t\,\bar{\theta}^2(t,V_t,\varphi_t)$$

• Taxes on risky investments profits

$$g(t,V_t,\varphi_t\sigma_t,-\varphi_t^2):=-(r_tV_t+\varphi_t^1\theta_t^1\sigma_t^1-\varphi_t^2\theta_t^2\lambda_t)+\rho(\varphi_t^1+\varphi_t^2)^+.$$

Here, $\rho \in [0,1[$ represents an instantaneous tax coefficient.

(INRIA, Mathrisk) 9 / 30

Nonlinear pricing in the imperfect market \mathcal{M}^g

Consider a European option with maturity T and terminal payoff $\xi \in L^2(\mathcal{G}_T)$. $\exists ! (X, Z, K) \text{ in } S^2 \times \mathbb{H}^2 \times \mathbb{H}^2_{\lambda} \text{ solution of the BSDE}$ $-dX_t = g(t, X_t, Z_t, K_t)dt - Z_t dW_t - K_t dM_t; \quad X_T = \xi.$

The process X is equal to the wealth process associated with initial value $x = X_0$ and strategy $\varphi = \Phi(Z, K)$, that is $X = V^{X_0, \varphi}$.

Its initial value $X_0 = X_0(\mathcal{T}, \xi)$ is thus a sensible price at time 0 for the seller of the claim ξ since it allows him to construct a hedging strategy φ s.t. the value of the associated portfolio is equal to ξ at time \mathcal{T} . Similarly for $X_t = X_t(\mathcal{T}, \xi)$ and it is the unique price which satisfying the hedging property.

This leads to a *nonlinear pricing* system, first introduced in NEK-Quenez'96 in Brownian framework, later called *g-evaluation* and denoted by \mathcal{E}^g : $\forall S \in [0, T], \ \forall \xi \in L^2(\mathcal{G}_S)$

$$\mathcal{E}_{t,S}^g(\xi) := X_t(S,\xi), t \in [0,S].$$

(INRIA, Mathrisk)

To ensure (strict) monotonicity and the no arbitrage property of the nonlinear pricing system \mathcal{E}^g , we assume

$$g(t, x, z, k_1) - g(t, x, z, k_2) \ge \gamma_t^{x, z, k_1, k_2} (k_1 - k_2) \lambda_t,$$

with $\gamma_t^{y,z,k_1,k_2} > -1$.

This is satisfied e.g. if g is non-decreasing wrt k, or if g is \mathcal{C}^1 in k with $\partial_k g(t,\cdot) > -\lambda_t$. on $\{t \leq \vartheta\}$.

In the special case of perfect market, $\partial_k g(t,\cdot) = -\theta_t^2$, and this Assumption is equivalent to $\theta_t^2 < 1$, the usual assumption.

(INRIA, Mathrisk) 11 / 30

Game options in the imperfect market $\mathcal{M}^{\mathcal{G}}$

The game option consists for the seller to select a cancellation time $\sigma \in \mathcal{T}$ and for the buyer an exercise time $\tau \in \mathcal{T}$, so that the seller pays to the buyer at time $\tau \wedge \sigma$ the payoff

$$I(\tau,\sigma) := \xi_{\tau} \mathbf{1}_{\tau \leq \sigma} + \zeta_{\sigma} \mathbf{1}_{\sigma < \tau}.$$

Assumptions: ξ , ζ : adapted RCLL processes in S^2 with $\zeta_T = \xi_T$; $\xi_t \leq \zeta_t, 0 \leq t \leq T$ a.s. satisfying **Mokobodzki's condition:** \exists two nonnegative RCLL supermartingales H and H' in S^2 such that:

$$\xi_t \le H_t - H_t' \le \zeta_t \quad 0 \le t \le T$$
 a.s.

(holds e.g. when ξ or ζ is a semimartingale satisfying some integrability conditions).

(INRIA, Mathrisk) 12 / 30

Game options in the imperfect market \mathcal{M}^g

Definition 1: For each initial wealth x, a super-hedge against the game option is a pair of stopping time σ and portfolio strategy $\varphi \in \mathbb{H}^2 \times \mathbb{H}^2_{\chi}$ s.t.

$$V_t^{x,\varphi} \geq \xi_t, \ 0 \leq t \leq \sigma$$
 a.s. and $V_\sigma^{x,\varphi} \geq \zeta_\sigma$ a.s.

Definition 2: Define the seller's price of the game option as

$$u_0 := \inf\{x \in \mathbb{R}, \ \exists (\sigma, \varphi) \in \mathcal{S}(x)\},\$$

where S(x) is the set of all super-hedges associated with initial wealth x. If inf is attained, u_0 is called the super-hedging price.

Definition 3: We define the **g-value** of the game option as

$$\inf_{\sigma \in \mathcal{T}} \sup_{\tau \in \mathcal{T}} \mathcal{E}_{0,\tau \wedge \sigma}^{g}[I(\tau,\sigma)].$$

(INRIA, Mathrisk) 13 / 30

Game options in the imperfect market \mathcal{M}^g Main results (1/2)

The seller's price u_0 of the game option is equal to the g-value.

Steps:

• The g-value is equal to the value of the generalized Dynkin game

$$\inf_{\sigma \in \mathcal{T}} \sup_{\tau \in \mathcal{T}} \mathcal{E}_{0,\tau \wedge \sigma}^{g}[I(\tau,\sigma)] = \sup_{\tau \in \mathcal{T}} \inf_{\sigma \in \mathcal{T}} \mathcal{E}_{0,\tau \wedge \sigma}^{g}[I(\tau,\sigma)].$$

- ② This value is equal to Y_0 , where (Y, Z, K, A, A') is the unique solution in $S^2 \times \mathbb{H}^2 \times \mathbb{H}^2_{\lambda} \times A^2 \times A^2$ of the Doubly Reflected BSDE associated with barriers ξ and ζ and driver g.
- $u_0 = Y_0.$

(INRIA, Mathrisk) 14 / 30

Game options in the imperfect market \mathcal{M}^g

Associated Doubly Reflected BSDE

$$-dY_{t}=g(t,Y_{t},Z_{t},K_{t})dt+dA_{t}-dA_{t}^{'}-Z_{t}dW_{t}-K_{t}dM_{t};\ Y_{T}=\xi_{T},$$

- (i) $\xi_t \leq Y_t \leq \zeta_t$, $0 \leq t \leq T$ a.s.,
- (ii) $dA_t \perp dA'_t$ (the measures are mutually singular)

(iii)
$$\int_0^1 (Y_t - \xi_t) dA_t^c = 0$$
 a.s. and $\int_0^1 (\zeta_t - Y_t) dA_t^{'c} = 0$ a.s.

$$\Delta A_{\tau}^d = \Delta A_{\tau}^d \mathbf{1}_{\{Y_{\tau^-} = \xi_{\tau^-}\}} \text{ and } \Delta A_{\tau}^{'d} = \Delta A_{\tau}^{'d} \mathbf{1}_{\{Y_{\tau^-} = \zeta_{\tau^-}\}} \text{a.s. } \forall \tau \in \mathcal{T} \text{precedent}$$

$$\mathcal{A}^2 = \{ \text{nondecreasing RCLL predictable proc. } A \text{ with } A_0 = 0 \text{ and } \mathbb{E}(A_T^2) < \infty \}$$

if ξ (resp. $-\zeta$) is left-u.s.c. along stopping times, then A (resp. A') is continuous.

(INRIA, Mathrisk) 15 / 30

Game options in the imperfect market \mathcal{M}^g

Main results (2/2)

• When ζ is left l.s.c along stopping times (and ξ only RCLL), the seller's price $u_0 := \inf\{x \in \mathbb{R}, \ \exists (\sigma, \varphi) \in \mathcal{S}(x)\}$ is the *super-hedging* price (inf = min). Let

$$\sigma^* := \inf\{t \ge 0, Y_t = \zeta_t\} \text{ and } \varphi^* := \Phi(Z, K).$$

The pair (σ^*, φ^*) is a super-hedge for the initial capital u_0 .

• When ζ only RCLL, may not exist a *super-hedge*. However $\forall \varepsilon > 0$ let

$$\sigma_{\varepsilon} := \inf\{t \geq 0 : Y_t \geq \zeta_t - \varepsilon\} \text{ and } \varphi^* := \Phi(Z, K).$$

The pair $(\sigma_{\varepsilon}, \varphi^*)$ is an ε -super-hedge for the initial capital u_0 , i.e.

$$V_t^{Y_0,\varphi^*} \geq \xi_t, \ 0 \leq t \leq \sigma_\varepsilon \ \text{a.s.} \quad \text{and} \quad V_{\sigma_\varepsilon}^{Y_0,\varphi^*} \geq \zeta_{\sigma_\varepsilon} - \varepsilon \ \text{a.s.}$$

The seller is completely hedged before σ_{ε} and hedged up to ε at cancellation time σ_{ε}

Market model with uncertainty

Let U be a nonempty closed subset of $\mathbb R$ and $\mathcal U$ be the set of U-valued predictable processes.

To each $\alpha \in \mathcal{U}$ is associated a market model \mathcal{M}_{α} , where the wealth process $V^{\alpha,x,\varphi}$ associated with initial wealth x and stategy φ satisfies

$$-dV_t^{\alpha,x,\varphi} = G(t,V_t^{\alpha,x,\varphi},\varphi_t\sigma_t,-\varphi_t^2,\alpha_t)dt - \varphi_t\sigma_t dW_t + \varphi_t^2 dM_t$$

where G is uniformly λ - admissible and satisfies the monotonicity conditions.

In the market model \mathcal{M}_{α} , the nonlinear pricing system is given by $\mathcal{E}^{g^{\alpha}}$, associated with driver $g^{\alpha}(t,\omega,y,z,k) := G(t,\omega,y,z,k,\alpha_t(\omega))$.

(INRIA, Mathrisk) 17 / 30

Robust superhedging

Definition 1: For given initial wealth x, a **robust super-hedge** is a pair (σ, φ) of a stopping time σ and a portfolio φ such that **for all** $\alpha \in \mathcal{U}$, we have

$$V_t^{\alpha,x,\varphi} \geq \xi_t, \ 0 \leq t \leq \sigma \ \text{ a.s. and } \ V_\sigma^{\alpha,x,\varphi} \geq \zeta_\sigma \ \text{a.s.}$$

Definition 2: Define the *robust seller's price* as

$$\mathbf{u_0} := \inf\{x \in \mathbb{R}, \ \exists (\sigma, \varphi) \in \mathcal{S}^r(x)\},\$$

where $S^r(x)$ is the set of all robust super-hedges associated with wealth x.

• if inf is attained, u_0 is called the robust super-hedging price.

(INRIA, Mathrisk) 18 / 30

Dual problem

Let $\alpha \in \mathcal{U}$. The seller's price of the game option in the market \mathcal{M}_{α} is characterized as its g^{α} -value (= $\inf_{\sigma \in \mathcal{T}} \sup_{\tau \in \mathcal{T}} \mathcal{E}^{g^{\alpha}}_{0,\tau \wedge \sigma}[I(\tau,\sigma)]$) Moreover, it is equal to Y^{α}_{0} , where $(Y^{\alpha}, Z^{\alpha}, K^{\alpha}, A^{\alpha}, A^{'\alpha})$ is the unique solution in $S^{2} \times \mathbb{H}^{2} \times \mathbb{H}^{2}_{\lambda} \times \mathcal{A}^{2} \times \mathcal{A}^{2}$ of the Doubly Reflected BSDE associated with driver g^{α} and barriers ξ and ζ .

We introduce a *dual problem* associated to the seller's super-hedging problem

$$v_0 := \sup_{\alpha \in \mathcal{U}} Y_0^{\alpha}.$$

(INRIA, Mathrisk) 19 / 30

Main results (1/2)

The robust seller's price $u_0 = dual \ value \ function \ v_0$. Steps:

1 $v_0 := \sup_{\alpha \in \mathcal{U}} Y_0^{\alpha}$ is the value of the *mixed* generalized Dynkin game:

$$v_0 = \sup_{\alpha \in \mathcal{U}} \inf_{\sigma \in \mathcal{T}} \sup_{\tau \in \mathcal{T}} \mathcal{E}_{0,\tau \wedge \sigma}^{g^{\alpha}}[I(\tau,\sigma)] = \sup_{\alpha \in \mathcal{U}} \sup_{\tau \in \mathcal{T}} \inf_{\sigma \in \mathcal{T}} \mathcal{E}_{0,\tau \wedge \sigma}^{g^{\alpha}}[I(\tau,\sigma)]. \quad (1)$$

② $v_0 = Y_0$, where (Y, Z, K, A, A') is the solution of the DRBSDE associated with barriers ξ and ζ and driver

$$\mathbf{g}(t,\omega,y,z,k) := \sup_{\alpha \in U} G(t,\omega,y,z,k,\alpha)$$

3 $\mathbf{u_0} = Y_0$.

Moreover, \inf_{σ} and \sup_{α} can be interchanged in (1). So:

$$\mathbf{u_0} = \sup_{\alpha \in \mathcal{U}} \inf_{\sigma \in \mathcal{T}} \sup_{\tau \in \mathcal{T}} \mathcal{E}_{0,\tau \wedge \sigma}^{g^{\alpha}}[I(\tau,\sigma)] = \inf_{\sigma \in \mathcal{T}} \sup_{\alpha \in \mathcal{U}} \sup_{\tau \in \mathcal{T}} \mathcal{E}_{0,\tau \wedge \sigma}^{g^{\alpha}}[I(\tau,\sigma)].$$

(INRIA, Mathrisk)

Main results (2/2)

- When ζ is left l.s.c along stopping times (and ξ only RCLL), the robust seller's price \mathbf{u}_0 is the robust super-hedging price (inf = min). Let $\sigma^* := \inf\{t \geq 0, \ Y_t = \zeta_t\}$ and $\varphi^* := \Phi(Z, K)$. The pair (σ^*, φ^*) is a robust super-hedge for the initial capital \mathbf{u}_0 .
 - If U compact, $\exists \bar{\alpha} \in \mathcal{U}$ s.t. the *robust* superhedging price = the superhedging price in $\mathcal{M}_{\bar{\alpha}}$, i.e. $\mathbf{u_0} = Y_0^{\bar{\alpha}}$, and $\bar{\alpha}$ is a *worst case scenario*.
- When ζ is only RCLL, there may not exist a robust *super-hedge*. However, $\forall \varepsilon > 0$, let $\sigma_{\varepsilon} := \inf\{t \geq 0 : Y_t \geq \zeta_t \varepsilon\}$. The pair $(\sigma_{\varepsilon}, \varphi^*)$ is an ε -robust super-hedge, i.e. $\forall \alpha \in \mathcal{U}$,

$$V_t^{\alpha,Y_0,\varphi^*} \geq \xi_t, \ 0 \leq t \leq \sigma_\varepsilon \ \text{a.s.} \quad \text{and} \quad V_{\sigma_\varepsilon}^{\alpha,Y_0,\varphi^*} \geq \zeta_{\sigma_\varepsilon} - \varepsilon \ \text{a.s.}$$

(INRIA, Mathrisk) 21 / 30

Proof: based on properties (comparison thms, estimates, optimization principles...) on BSDEs and DRBSDEs and the characterization of the value of generalized Dynkin games in terms of nonlinear Doubly Reflected BSDEs (Dumitrescu-Quenez-Sulem, EJP(2016)).

(INRIA, Mathrisk) 22 / 30

Example with ambiguity on the default probability

Consider a family of probability measures Q^{α} , equivalent to P, which admits Z_T^{α} as density with respect to P, with

$$dZ_t^{\alpha} = Z_t^{\alpha} \gamma(t, \alpha_t) dM_t; \quad Z_0^{\alpha} = 1,$$

where γ bounded and $\gamma(t, \alpha) > C_1 > -1$.

Under Q^{α} , $M_t^{\alpha} := N_t - \int_0^t \lambda_s (1 + \gamma(s, \alpha_s)) ds$ is a G-martingale and $\gamma(t, \alpha_t)$ represents the *uncertainty on the default intensity*.

To each α , corresponds a market model \mathcal{M}_{α} in which the wealth satisfies

$$-dV_t^{\alpha,x,\varphi} = f(t, V_t^{\alpha,x,\varphi}, \varphi_t'\sigma_t, -\varphi_t^2)dt - \varphi_t'\sigma_t dW_t + \varphi_t^2 dM_t^{\alpha}; \quad V_0^{\alpha,x,\varphi} = x,$$

where f is λ -admissible.

There exists an unique solution $(X^{\alpha}, Z^{\alpha}, K^{\alpha})$ of the following Q^{α} -BSDE:

$$-dX_t^{\alpha} = f(t, X_t^{\alpha}, Z_t^{\alpha}, K_t^{\alpha})dt - Z_t^{\alpha}dW_t - K_t^{\alpha}dM_t^{\alpha}; \quad X_T^{\alpha} = \xi.$$

The nonlinear price system $\mathcal{E}_{Q^{\alpha}}^{f}$ in \mathcal{M}_{α} , is thus the f-evaluation under Q^{α} .

(INRIA, Mathrisk) 23 / 30

Since $M_t^{\alpha} = M_t - \int_0^t \lambda_s \gamma(s, \alpha_s) ds$, the dynamics of the wealth in the market model \mathcal{M}_{α} can be written as follows:

$$-dV_t^{\alpha,x,\varphi} = -\lambda_t \gamma(t,\alpha_t) \varphi_t^2 dt + f(t,V_t^{\alpha,x,\varphi},\varphi_t \sigma_t, -\varphi_t^2) dt - \varphi_t \sigma_t dW_t + \varphi_t^2 dM_t.$$

This corresponds to our model with uncertainty where G is given by:

$$G(t,\omega,y,z,k,\alpha) := \lambda_t(\omega)\gamma(t,\omega,\alpha)k + f(t,\omega,y,z,k).$$

Proposition The *seller's robust price* of the game option in this model admits the following dual representation:

$$\mathbf{u_0} = \sup_{\alpha \in \mathcal{U}} \inf_{\sigma \in \mathcal{T}} \sup_{\tau \in \mathcal{T}} \mathcal{E}^f_{Q^\alpha, 0, \tau \wedge \sigma}[I(\tau, \sigma)] = \inf_{\sigma \in \mathcal{T}} \sup_{\alpha \in \mathcal{U}} \sup_{\tau \in \mathcal{T}} \mathcal{E}^f_{Q^\alpha, 0, \tau \wedge \sigma}[I(\tau, \sigma)].$$

Let **g** be the map defined for each (t, ω, z, k) by

$$\mathbf{g}(t,\omega,y,z,k) := \sup_{\alpha \in U} (\lambda_t(\omega)\gamma(t,\omega,\alpha)k + f(t,\omega,y,z,k)).$$

We have $\mathbf{u_0} = Y_0$, where Y is the solution of the P-DRBSDE associated with driver \mathbf{g} and barriers ξ and ζ .

(INRIA, Mathrisk) 24 / 30

Buyer's point of view

European option

Consider a European option with maturity T and payoff $\xi \in L^2(\mathcal{G}_T)$. The buyer's price of the option is equal to the opposite of the seller's price of the option with payoff $-\xi$:

$$\tilde{\mathcal{E}}_{\cdot,S}^{g}(\xi) := -\mathcal{E}_{\cdot,S}^{g}(-\xi) = -X.(T,-\xi).$$

Indeed, setting $\tilde{X}_0:=X_0(T,-\xi)$ and $\tilde{\varphi}=\Phi(Z(T,-\xi),K(T,-\xi))$, we have $V_T^{\tilde{X}_0,\tilde{\varphi}}+\xi=0$ a.s.

Hence, if the initial price of the option is $-\tilde{X}_0$, he starts with \tilde{X}_0 at t=0 and following the strategy $\tilde{\varphi}$, the payoff he receives at T allows him to recover the debt he incurred at t=0 by buying the option.

The strategy $\tilde{\varphi}$ is thus the hedging strategy for the buyer.

In the case of a perfect market, the dynamics of the wealth X are linear wrt (X,φ) , and the associated g-evaluation \mathcal{E}^g is linear, so $\tilde{\mathcal{E}}^g = \mathcal{E}^g$.

25 / 30

Buyer's point of view - Game option

Supposing the initial price of the game option is z, the buyer starts with -z at t=0, and searches a *super-hedge*, i.e. an exercise time τ and a strategy φ , s.t. the payoff that he receives allows him to recover the debt he incurred at t=0 by buying the game option, no matter the cancellation time chosen by the seller:

Definition 1

A buyer's super-hedge against the game option with payoffs (ξ,ζ) and initial price $z\in\mathbb{R}$ is a pair (τ,φ) of a stopping time τ and a strategy φ such that

$$V_t^{-z,\varphi} \ge -\zeta_t, \ 0 \le t < \tau \ \text{ a.s. and } V_{\tau}^{-z,\varphi} \ge -\xi_{\tau} \ \text{a.s.}$$

Let $\mathcal{B}_{\xi,\zeta}(z)$: set of buyer's super-hedges against the game option with payoffs (ξ,ζ) associated with initial price $z\in\mathbb{R}$.

The first inequality also holds at $t=\tau$ because $\xi \leq \zeta$. It follows that $\mathcal{B}_{\xi,\zeta}(z) = \mathcal{S}_{-\zeta,-\xi}(-z)$, where $\mathcal{S}_{-\zeta,-\xi}(-z)$ is the set of seller's super-hedges against the game option with payoffs $(-\zeta,-\xi)$ associated with initial capital -z.

(INRIA, Mathrisk) 26 / 30

Definition 2

The buyer's price \tilde{u}_0 of the game option is defined as the supremum of the initial prices which allow the buyer to be super-hedged, that is

$$\tilde{u}_0 := \sup\{z \in \mathbb{R}, \ \exists (\tau, \varphi) \in \mathcal{B}_{\xi, \zeta}(z)\}.$$

Using the Remark, we derive that

$$-\tilde{u}_0 = \inf\{x \in \mathbb{R}, \ \exists (\tau, \varphi) \in \mathcal{S}_{-\zeta, -\xi}(x)\},\$$

which gives the following result:

Theorem 3

The buyer's price of the game option with payoffs (ξ, ζ) is equal to the opposite of the seller's price of the game option with payoffs $(-\zeta, -\xi)$.

In the special case of a perfect market, the buyer's price is equal to the seller's price .

(INRIA, Mathrisk) 27 / 30

Buyer's point of view

Game option with model ambiguity

Definition 4

For a given initial wealth $z \in \mathbb{R}$, a buyer robust super-hedge against the game option with payoffs (ξ,ζ) is a pair (τ,φ) of a stopping time $\tau \in \mathcal{T}$ and a risky-assets strategy $\varphi \in \mathbb{H}^2 \times \mathbb{H}^2_\lambda$ such that

$$V^{\alpha,-\mathsf{z},\varphi}_t \geq -\zeta_t, \ 0 \leq t < \tau \ \text{ a.s. and } V^{\alpha,-\mathsf{z},\varphi}_\tau \geq -\xi_\tau \ \text{a.s.}\,, \quad \forall \alpha \in \mathcal{U}.$$

The *buyer's robust price* of the game option is defined as the supremum of the initial prices which allow the buyer to construct a robust superhedge:

$$\tilde{\mathbf{u}}_{\mathbf{0}} := \sup\{z \in \mathbb{R}, \ \exists (\tau, \varphi) \in \mathcal{B}^{r}_{\varepsilon, \zeta}(z)\}.$$

where $\mathcal{B}^r_{\xi,\zeta}(z)$ the set of all buyer's robust super-hedges against the game option with payoffs (ξ,ζ) associated with initial price $z\in\mathbb{R}$.

(INRIA, Mathrisk) 28 / 30

Theorem 5

The buyer's robust price of the game option with payoffs (ξ, ζ) is equal to the opposite of the seller's robust price of the game option with payoffs $(-\zeta, -\xi)$.

We thus have the following dual formulation of the buyer's robust price:

$$\tilde{\mathbf{u}}_{\mathbf{0}} = \inf_{\alpha \in \mathcal{U}} \sup_{\tau \in \mathcal{T}} \inf_{\sigma \in \mathcal{T}} \tilde{\mathcal{E}}^{\mathbf{g}^{\alpha}}_{0, \tau \wedge \sigma}[I(\tau, \sigma)] = \inf_{\alpha \in \mathcal{U}} \inf_{\sigma \in \mathcal{T}} \sup_{\tau \in \mathcal{T}} \tilde{\mathcal{E}}^{\mathbf{g}^{\alpha}}_{0, \tau \wedge \sigma}[I(\tau, \sigma)].$$

The buyer's robust price $\tilde{\mathbf{u}}_{\mathbf{0}}$ is thus equal to the infimum over $\alpha \in \mathcal{U}$ of the buyer's prices in \mathcal{M}_{α} .

(INRIA, Mathrisk) 29 / 30

Conclusion/Summary

- We have studied game options (pricing and superhedging issues) in a financial market with default and imperfections taken into account via the *nonlinearity* of the wealth dynamics. We proved that the seller's price of a game option coincides with the value function of a corresponding *generalized* Dynkin game with g-evaluation. Links with associated DRBSDE also provide the (ε)-superhedging strategy.
- We have also studied these issues in the case of model uncertainty, in particular ambiguity on the default probability, and characterize the seller's price of a game option with model uncertainty as the value function of a mixed generalized Dynkin game.

Our approach relies on links between *generalized* (mixed) Dynkin games and doubly reflected BSDEs, and their properties.

Thank you for your attention!

(INRIA, Mathrisk) 30 / 30