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Implied volatility

• Asset price process: (St = eXt )t≥0, with X0 = 0.

• Black-Scholes-Merton (BSM) framework:

CBS(τ, k, σ) := E0

(
eXτ − ek

)
+

= N (d+)− ekN (d−) ,

d± := −
k

σ
√
τ
±

1

2
σ
√
τ .

• Spot implied volatility στ (k): the unique (non-negative) solution to

Cobserved(τ, k) = CBS(τ, k, στ (k)).

• Implied volatility: unit-free measure of option prices.

Implied volatility is not available in closed form generally.
Its asymptotic behaviour is available via (small/large k, τ) approximations.
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Literature

Implied volatility (στ (k)) asymptotics as |k| ↑ ∞, τ ↓ 0 or τ ↑ ∞:

• Hagan-Kumar-Lesniewski-Woodward (2003/2015), Ob lój (2008): small-maturity
for the SABR model.

• Berestycki-Busca-Florent (2004): small-τ using PDE methods for diffusions.

• Henry-Labordère (2009): small-τ asymptotics using differential geometry.

• Forde et al.(2012), Jacquier et al.(2012): small/ large τ using large deviations.

• Lee (2003), Benaim-Friz (2009), Gulisashvili (2010-2012), Caravenna-Corbetta
(2016), De Marco-Jacquier-Hillairet (2013): |k| ↑ ∞.

• Laurence-Gatheral-Hsu-Ouyang-Wang (2012): small-τ in local volatility models.

• Mijatović-Tankov (2012): small-τ for jump models.

• Bompis-Gobet (2015): asymptotic expansions in the presence of both local and
stochastic volatility using Malliavin calculus.

• Fouque et al.(2000-2011): perturbation techniques for slow and fast
mean-reverting stochastic volatility models.
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Related works:

• Deuschel-Friz-Jacquier-Violante (CPAM 2014), De Marco-Friz (2014): small-noise
expansions using Laplace method on Wiener space (Ben Arous-Bismut approach).

• Baudoin-Ouyang (2015): small-noise expansions in a (fully) fractional setting

• Gatheral-Jaisson-Rosenbaum (2014), and Bayer-Gatheral-Friz (2015),

• Forde-Zhang (2015): large deviations in a fractional stochastic volatility setting

• Fukasawa (2011,2015), Alós-León-Vives (2007) small-time (fractional) skew

• Guennoun-Jacquier-Roome (2015), El Euch-Rosenbaum (2016) fractional Heston.
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”Classical” case: (Hi = 1
2

) case: Deuschel-Friz-Jacquier-Violante (2011)

dXεt = b(ε,Xεt )dt + ε
m∑
i=1

σi (Xεt )dW i
t , Xε0 = xε0 ∈ Rd

Fractional case: (Hi = H ∈ ( 1
4
, 1)) case: Baudoin-Ouyang (2015)

dXεt = b(ε,Xεt )dt + ε
m∑
i=1

σi (Xεt )d(WH)it , Xε0 = xε0 ∈ Rd

Our main interest: H1 = 1
2
,H2 6= 1

2
.
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Rough volatility models

• Short-term data suggests a time decay of the ATM skew proportional to τ−θ,
with θ ∈ (0, 1/2) while classical stochastic volatility models generate a constant
short-maturity skew.

• Gatheral-Jaisson-Rosenbaum and Bayer-Gatheral-Friz (2014,1015) proposed a
fractional volatility model:

dSt = St(σtdZt + µtdt),
σt = exp (Yt) ,

(1)

where
dYt = µdWH

t − b(Yt −m)dt,

for µ, b > 0, m ∈ R for a Bm Z and a fBm motion WH with Hurst parameter H.

• Time series of the Oxford-Man SPX realised variance as well as implied volatility
smiles of the SPX suggest that H ∈ (0, 1/2): short-memory volatility.

• Main drawback: loss of Markovianity (H 6= 1/2) rules out PDE techniques, and
Monte Carlo is computationally intensive. One way out is an efficient ”Hybrid
scheme” of Bennedsen, Lunde and Pakkanen (2015).
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Rough volatility models: our setting

dXt = b1(Yt)dt + σ1(Yt)dWt

dYt = b2(Yt)dt + σ2dW
H
t .

(2)

σ2 > 0 (extendible to bounded, elliptic) and H ∈ (0, 1), particular interest in H < 1/2.

Forde-Zhang ’16: b1 ≡ b2 ≡ 0, and σ1 ∈ Cα, α ∈ (0, 1] (second part of the talk);
Fractional Stein-Stein: b1(y) ≡ −y2/2, σ1(y) ≡ y , b2(y) ≡ a− by (first part).
Gatheral-Jaisson-Rosenbaum ’14: b1(y) ≡ −e2y/2, σ1(y) ≡ ey , b2(y) ≡ a− by .

To introduce correlation we consider B̃ and B independent, and set W = ρ̄B̃ + ρB and

WH
t =

∫ t

0
K(t, s)dBs

where K the Volterra kernel of the (standard) fBm WH .

An intuitive remark: Mandelbrot-van Ness representation for fBm:
At time zero, the volatility process in (2) has already accumulated some randomness.
⇒ Hot-start of the process Y (with A. Jacquier and C. Lacombe).
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1 Introduction

2 Approach via density asymptotics
Varadhan-type asymptotics for fractional SDEs
Rescalings and density asymptotics for fractional models
Corollaries: Short-time/tail expansion in fractional models
Implied volatility asympotics
Idea of the proof

3 Bypassing density asymptotics
Refined expansions and moderate regimes
A non-Markovian extention of Osajima’s energy expansion
Implied volatility asymptotics
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Idea of the proof

Varadhan-type asymptotics

Recall the Black-Scholes density expansion: heat-kernel asymptotics

fBS(t, x) ∼ t−1/2 exp

(
−

1

2t

( x
σ

)2
)
, as t → 0.

In the ‘homogenous” (fractional) case: H1 = H2 = . . . = Hd = H (Baudoin-Ouyang)

dXt = b(Xt)dt +
m∑
i=1

σi (Xt)d(WH)it , X0 = x0 ∈ Rd (3)

(Extended) Varadhan formula

fX(t, x) ∼ cst t−H exp

(
−
d2(x0, x)

2t2H

)
, as t → 0.

What if Hurst parameters are different H1 6= H2?
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Rescalings

Key to asymptotic expansions for H1 6= H2: Rescalings

Recall the considered processes

dXt = b1(Yt)dt + σ1(Yt)dWt

dYt = b2(Yt)dt + σ2dW
H
t .

Define appropriate rescalings

dX εt = b1(εκ1 ,Y εt )dt + εβσ1(Y εt )dWt

dY εt = b2(εκ2 ,Y εt )dt + εβσ2dW
H
t .
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Rescalings

dX εt = b1(εκ1 ,Y εt )dt + εβσ1(Y εt )dWt dY εt = b2(εκ2 ,Y εt )dt + εβσ2dW
H
t . (4)

Fractional Stein-Stein: Consider (X0,Y0) = (0, y0) and

dXt = −
Y 2
t

2
dt + YtdWt , dYt = (a− bYt)dt + cdWH

t . (5)

• Rescaling 1 (short-time): (X εt ,Y
ε
t ) := (ε2H−1Xε2t ,Yε2t) ⇒ (4) with

κ1 = 2H + 1, κ2 = 2 and β = 2H, (xε0 , y
ε
0 ) = (0, y0):

dX εt = −ε2H+1 (Y εt )2

2
dt + ε2HY εt dWt , dY εt = ε2(a− bY εt )dt + ε2HcdWH

t .

(6)

• Rescaling 2 (tails): (X εt ,Y
ε
t ) := (ε2HXt , εHYt) ⇒ (4) with κ1 = 0, κ2 = β = H,

(xε0 , y
ε
0 ) = (0, εHy0):

dX εt = −
(Y εt )2

2
dt + εHY εt dWt , dY εt = (aεH + bY εt )dt + εHcdWH

t . (7)
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Theorem (Harms-H-Jacquier)

Consider an SDE of the form (4). Then the density of X εT admits an expansion

fε(T , x) = exp

(
−

Λ(x)

ε2β
+

Λ′(x)X̂T

εβ

)
ε−min(κ1,β)

(
c0 +O(εδ(κ1,β))

)
, as ε→ 0,

where

Λ(x) = inf

{
1

2
‖k‖2
HH

, k ∈ Kx
x0

0 ,y
0
0

}
=

1

2
‖k0‖2

HH
,

and

dX̂t =
[
∂xb1

(
0, φk0

t

)
+ ∂xσ1

(
φh0
t

)
· k̇0(t)

]
X̂tdt+∂εβb1

(
0, φk0

t

)
dt, X̂0 = ∂εβ x

ε
0 |ε=0 ,

where φk0 denotes the ODE solution of the same SDE (4) replacing εβdW by k̇0 and
xε0 by x0

0 .
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Notations

• H: absolutely continuous paths [0,T ]→ R2 starting at 0 such that
∥∥∥ḣ∥∥∥2

H
<∞.

• HH := KHH and k := KHh, where KH denotes the Volterra kernel.

• For fixed (x0, y0) ∈ R2, φk is the (unique) ODE solution to

φ̇kt = b1

(
0, φkt

)
dt + σ1

(
φht

)
dk1

t + σ2

(
φht

)
dk2

t , φk0 = (x0
0 , y

0
0 ).

• Denote ψk := Π1φ
k its projection on to the first coordinate X .

• Ka :=
{
k ∈ HH : ψk

T = a ∈ R
}
6= ∅ (”by Hörmander condition”).

• Λ(a) := inf
{

1
2
‖k‖2

H : k ∈ Ka
}

.
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Corollary: Varadhan-type asymptotics

Corollary (short-time asymptotics in Stein-Stein) dYt = (a− bYt)dt + cdWH
t

In the fractional Stein-Stein model (Xt ,Yt) with X0 = 0, Y0 = y0 > 0 the density of
Xt satisfies in a neighbourhood of (x0, y0) the following asymptotic expansion as t → 0

fX (t, x) = exp

(
−

Λ(x)

t2H

)
t−H

(
1

2π
+O(tδ(H,H+1/2))

)
where

Λ(x) = inf

{
1

2
‖k‖2
HH

, k ∈ Kx
x0,y0

}
.

Proof: Take T = 1, ε2 = t and consider (X εt ,Y
ε
t ) := (ε2H−1Xε2t ,Yε2t) with

X ε0 = 0, Y ε0 = y0 > 0. ⇒ Short-time scaling:

dX εt = −ε2H+1 (Y εt )2

2
dt + ε2HY εt dWt , dY εt = ε2(a + bY εt )dt + ε2HcdWH

t , (6)

Note that the drift vanishes in the limit ε→ 0 and xε0 = x0 = 0.

⇒ (X̂t , Ŷt) ≡ 0, so that there is no 1/εβ = 1/tβ/2 term in the exponential.
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Corollary: tail asymptotics
Corollary (tail expansion in Stein-Stein) dYt = (a + bYt)dt + cdWH

t

Consider the fractional Stein-Stein model with X0 = 0, Y0 = y0 > 0. Then as x →∞,

fX (T , x) = exp
(
−c1x + c2x

1/2
) 1

x1/2

(
c0 +O

(
x1/2

))
where c1 := Λ(1), c2 := X̂T Λ′(1).

Note that the expression on the RHS is independent of the Hurst-parameter!

Proof: Consider (X εT ,Y
ε
T ) := (ε2HXT , ε

HYT ) with X ε0 = ε2HX0 and Y ε0 = εHY0.

dX εt = −
(Y εt )2

2
dt + εHY εt dWt , dY εt = (aεH + bY εt )dt + εHcdWH

t , (7)

Note that X εT
∆
= ε2HXT . ⇒ P(X εT ≥ y) = P(XT ≥ y/ε2H), ⇒

fX (T , y/ε2H) = ε2H fε(T , y). Take y = 1, that is x := ε−2H . By the theorem,

fε(T , 1) ≈ exp
(
− Λ(1)

ε2H + . . .
)

1
εH

, hence

fX (T , x) ≈ exp
(
− Λ(1)

ε2H + . . .
)
εH = exp (−Λ(1)x + . . .) 1

x1/2 .

Blanka Horvath Short dated option pricing under rough volatility



Introduction
Approach via density asymptotics

Bypassing density asymptotics

Varadhan-type asymptotics for fractional SDEs
Rescalings and density asymptotics for fractional models
Corollaries: Short-time/tail expansion in fractional models
Implied volatility asympotics
Idea of the proof

Corollary: tail asymptotics
Corollary (tail expansion in Stein-Stein) dYt = (a + bYt)dt + cdWH

t

Consider the fractional Stein-Stein model with X0 = 0, Y0 = y0 > 0. Then as x →∞,

fX (T , x) = exp
(
−c1x + c2x

1/2
) 1

x1/2

(
c0 +O

(
x1/2

))
where c1 := Λ(1), c2 := X̂T Λ′(1).

Note that the expression on the RHS is independent of the Hurst-parameter!

Proof: Consider (X εT ,Y
ε
T ) := (ε2HXT , ε

HYT ) with X ε0 = ε2HX0 and Y ε0 = εHY0.

dX εt = −
(Y εt )2

2
dt + εHY εt dWt , dY εt = (aεH + bY εt )dt + εHcdWH

t , (7)

Note that X εT
∆
= ε2HXT . ⇒ P(X εT ≥ y) = P(XT ≥ y/ε2H), ⇒

fX (T , y/ε2H) = ε2H fε(T , y). Take y = 1, that is x := ε−2H . By the theorem,

fε(T , 1) ≈ exp
(
− Λ(1)

ε2H + . . .
)

1
εH

, hence

fX (T , x) ≈ exp
(
− Λ(1)

ε2H + . . .
)
εH = exp (−Λ(1)x + . . .) 1

x1/2 .

Blanka Horvath Short dated option pricing under rough volatility



Introduction
Approach via density asymptotics

Bypassing density asymptotics

Varadhan-type asymptotics for fractional SDEs
Rescalings and density asymptotics for fractional models
Corollaries: Short-time/tail expansion in fractional models
Implied volatility asympotics
Idea of the proof

From density to implied volatility: small-time

Recall the Black-Scholes density expansion:

fBS(t, x) ∼ t−1/2 exp

(
−

1

2t

( x
σ

)2
)
, as t → 0, for any x ∈ R.

The corollary (Varadhan-type asymptotics) implies that in the fractional Stein-Stein
model

fX(t, x) ∼ cst t−H exp

(
−
d2(x0, y0; x)

2t2H

)
, as t → 0.

Matching the leading-orders gives

σBS(t, x) ∼
|x |

d(x0, y0; x)
tH−1/2 as t → 0.

Skew explodes with rate H − 1/2 in the short end whenever H < 1/2.
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From density to implied volatility: tails

Recall the Black-Scholes density expansion:

fBS(t, x) ∼ exp

(
−

x2

2σ2t
−

x

4

)
as x →∞, for any t > 0.

Our theorem (corollary) says that in the fractional Stein-Stein model (5), we have

fX(t, x) ∼
cst

x1/2
exp

(
−c1x + c2

√
x
)
, as x →∞.

Matching the leading-orders gives

−c1x + c2
√
x ∼ −

x2

2σ2t
−

x

4
,

and we recover Roger Lee’s formula independently of the Hurst exponent in (5).
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Proof of Theorem 1

dXt = −ε2H+1 1

2
Y 2
t dt + ε2HYtdWt , dYt = ε2HdWH

t ,

with the same initial condition X0 = Y0 = 0.

Density: fε(T , x) = exp

[
−

Λ(x)

ε4H
+

Λ′(x)X̂T

ε2H

]
ε−2H

(
c0 +O(ε2H)

)
.

Proof: Take x ∈ R and a C∞-bounded function F such that F (x) = 0.

fε(T , x)e−F (x)/ε4H
=

1

2πε2H

∫
R
E
{

exp

[
i(ζ, 0) ·

(
X εT − (x , 0)

ε2H

)
−

F (X εT )

ε4H

]}
dζ.

Choose F such that F (·) + Λx0 (·) has a non-degenerate minimum at z. This implies

that k 7→ F (φkT (x0, y0)) + 1
2
‖k‖2
HH

has a non-degenerate minimum at k0 ∈ HH .

(For instance F (z) = λ|z − x |2 − [Λx0,y0 (z)− Λx0,y0 (x)] with λ > 0).
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Proof of Theorem 1
Replace ε2HdB (B := (W ,WH)) in the SDE by ε2HdW + k̇0.

Call the corresponding Girsanov-transformed process Z̃εt = (X̃ εt , Ỹ
ε
t ):

dX̃ εt = −ε2H+1 1

2
Ỹ 2
t dt + Ỹ εt (ε2HdWt + (k̇0)1), dỸt = ε2HdWH

t + (k̇0)2.

Girsanov factor

G = exp

(
−

1

ε2H

∫ T

0
ψ(k0)tdBt −

1

2ε4H
‖k0‖2

HH

)
.

Therefore

f (x ,T )e−F (x)/4ε4H
=

1

2πε2H

∫
R
E
[
eε

2H iζ(X̃T−x)−ε−4HF (X̃T )G
]
dζ

=
1

2πε2H

∫
R
E
[
e(∗)

]
dζ

where

(∗) = ε2H iζ(X̃T − x)− ε−4HF (X̃T )− ε−2H
∫ T

0
ψ(γ)tdBt − ε−4H 1

2
‖γ‖2
HH

.
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Proof of Theorem 1
Replace ε2HdB (B := (W ,WH)) in the SDE by ε2HdW + k̇0.

Call the corresponding Girsanov-transformed process Z̃εt = (X̃ εt , Ỹ
ε
t ):

dX̃ εt = −ε2H+1 1

2
Ỹ 2
t dt + Ỹ εt (ε2HdWt + (k̇0)1), dỸt = ε2HdWH

t + (k̇0)2.

Girsanov factor

G = exp

(
−

1

ε2H

∫ T

0
ψ(k0)tdBt −

1

2ε4H
‖k0‖2

HH

)
.

By a stochastic Taylor expansion of Z̃εt = (X̃ εt , Ỹ
ε
t ) for ε2H → 0,

exp

−F
(
X̃ εt

)
ε4H

 = exp

[
−1

ε4H

(
F (x)− ε2H

∫ T

0
ψ(k0)tdBt − ε2H X̂T · Λ′x0

(x) +O(ε4H)

)]
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Proof of Theorem 1
Replace ε2HdB (B := (W ,WH)) in the SDE by ε2HdW + k̇0.

Call the corresponding Girsanov-transformed process Z̃εt = (X̃ εt , Ỹ
ε
t ):

dX̃ εt = −ε2H+1 1

2
Ỹ 2
t dt + Ỹ εt (ε2HdWt + (k̇0)1), dỸt = ε2HdWH

t + (k̇0)2.

Girsanov factor

G = exp

(
−

1

ε2H

∫ T

0
ψ(k0)tdBt −

1

2ε4H
‖k0‖2

HH

)
.

By a stochastic Taylor expansion of Z̃εt = (X̃ εt , Ỹ
ε
t ) for ε2H → 0,

exp

−F
(
X̃ εt

)
ε4H

 = exp

[(
1

ε2H

∫ T

0
ψ(k0)tdBt +

1

ε2H
X̂T · Λ′x0

(x) +O(1)

)]
.

The rest of the proof follows Ben Arous’ proof for X εT .

Blanka Horvath Short dated option pricing under rough volatility



Introduction
Approach via density asymptotics

Bypassing density asymptotics

Refined expansions and moderate regimes
A non-Markovian extention of Osajima’s energy expansion
Implied volatility asymptotics

1 Introduction

2 Approach via density asymptotics
Varadhan-type asymptotics for fractional SDEs
Rescalings and density asymptotics for fractional models
Corollaries: Short-time/tail expansion in fractional models
Implied volatility asympotics
Idea of the proof

3 Bypassing density asymptotics
Refined expansions and moderate regimes
A non-Markovian extention of Osajima’s energy expansion
Implied volatility asymptotics

Blanka Horvath Short dated option pricing under rough volatility



Introduction
Approach via density asymptotics

Bypassing density asymptotics

Refined expansions and moderate regimes
A non-Markovian extention of Osajima’s energy expansion
Implied volatility asymptotics

Bypassing density asymptotics

Direct call price expansion: For x ≥ 0 the option price satisfies

c(ε1−2Hx , t) : = E
[
(exp(Xt)− exp(ε1−2Hx))+

]
= E

[
(exp(Zt)− exp(ε1−2Hx))+ G

∣∣
∗

]
where Z is the controlled process around the optimal path k and G

∣∣
∗ = e

−I (x)

ε4H e
−I ′(x)g1
ε2H

is the Girsanov factor for the optimal path, and g1 a Gaussian random variable. Then

c(ε1−2Hx , t) = exp

(
−
I (x)

ε4H

)
exp

(
xε1−2H

)
J(ε, x), where Û := Ẑε1 − x and

J(ε, x) := E

[
exp

(
−I ′(x)

ε2H
Û

)(
exp(ε1−2H Û)− 1

)
exp

(
I ′(x)R2

)
1
Û≥0

]
.

⇒ Expansion (uniformly in x) via epansion of the “energy” I directly (Osajima).
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Moderate regimes

• Moderate Regimes (in the sense of Friz-Gerhold-Pinter ’16) interpolate between

out-of-the-money calls with fixed strike
(

log K
S0

)
= k > 0 and at-the-money

k = 0 calls: Now kt = ctθ ⇒ MOTM (for 0 < θ < 1
2

) and AATM (for larger θ)

• Reflects market reality: options closer expiry ⇒ strikes closer to the money
first observed by Mijatović-Tankov on FX markets

• The moderate regime (MOTM) permits explicit computations for the rate
function Λ(k) in terms of the model parameters
Moderate deviations ⇒ Advantage over large deviations (OTM) case where the
Λ(k) often related to geodesic distance problems and not explicitly available.

• MOTM expansions naturally involve quantities very familiar to practitioners,
notably spot (implied) volatility, implied volatility skew . . .

• In some cases (fractional volatility models) the scaling θ permits a fine-tuning to
understand the behavior and derivatives of the energy function.
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Moderate regimes for rough volatility

Rescalings =⇒ We tacitly agreed to consider P
(
Xt ≈ t1/2−Hx

)
. Now it is only a

small step to consider instead (for some suitable small θ > 0)

P
(
Xt ≈ t1/2−H+θx

)
.

Theorem (Bayer-Friz-Gulisashvili-H-Stemper)

Consider a moderately out-of-the-money call kt = xt1/2−H+θ; θ ∈ (0,H) resp.
θ ∈ (0, 2H

3
). Then as t → 0, the following holds

log c(kt , t) ≈
1

2
Λ′′(0)

x2

t2H−2θ
+

1

6
Λ′′′(0)

x3

t2H−3θ
,

where we have explicit expressions: Λ′′(0) = 1
σ2

0
and Λ′′′(0) = −ρ 6σ′0

σ4
0
〈K , 1〉.

Here K denotes the Volterra kernel and 〈K , 1〉 :=
∫ 1

0

∫ t
0 K(t, s)dsdt.
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Moderate regimes for rough volatility

Corollary (MOTM Implied volatility skew)

In the moderately out-of-the-money case (kt = xt1/2−H+θ; θ ∈ (0,H); θ ∈ (0, 2H
3

)) the
implied volatility satisfies the expansion

σimpl (kt , t) = σ0 − ρ
σ′0
σ0

∫ 1

0

∫ t

0
K(t, s) dsdt kt tH−1/2

(
1 + o(1)

)
.

Proof: The statement follows from the Theorem via matching components in the
asymptotic expansions and by (see Gao-Lee (2014)) using

tσ2
impl (kt , t) ≈

−k2
t

2 log c(kt , t)
.

This formula for the skew is in accord with ones previously derived by Alòs-León-Vives
(2007) and Fukasawa (2011, 2016) in different settings.
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Thank you!
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