Remarks on rough Bergomi: asymptotics and calibration

Antoine Jacquier

Department of Mathematics, Imperial College London

Advances in Financial Mathematics, Paris, January 2017

Based on joint works with C. Martini, A. Muguruza, M. Pakkanen and H. Stone

January 11, 2017

Implied volatility Rough Bergomi mode

Contents

イロン イタン イモン イモン 三日

troduction Implied volatility Rough Bergomi model

2 Large deviations Large deviation Proof

3 VIX Futures and options Rough Bergomi, version

Motivation

- Classical stochastic volatility models generate a constant short-maturity ATM skew and a large-maturity one proportional to $\tau^{-1};$
- However, short-term data suggests a time decay of the ATM skew proportional to $\tau^{-lpha}, \ \alpha \in (0, 1/2).$
- One solution: adding volatility factors (risk of over-parameterisation). Gatheral's Double Mean-Reverting, Bergomi-Guyon, each factor acting on a specific time horizon.
- In the Lévy case (Tankov, 2010), the situation is different, as $\tau \downarrow 0$:
 - in the pure jump case with $\int_{(-1,1)} |x| \nu(dx) < \infty$, then $\sigma_{\tau}^2(0) \sim c\tau$;
 - in the (α) stable case, $\sigma_{\tau}^2(0) \sim c \tau^{1-2/\alpha}$ for $\alpha \in (1,2)$;
 - for out-of-the-money options, $\sigma_{\tau}^2(k) \sim \frac{k^2}{2\tau |\log(\tau)|}$.

Implied volatility Rough Bergomi mode

Rough volatility models

 Gatheral-Jaisson-Rosenbaum (2014)-based on Comte-Coutin-Renault-proposed a fractional volatility model:

$$dS_t = \sigma_t S_t dB_t, \sigma_t = \exp(Z_t),$$

where *B* is a standard Brownian motion, and *Z* a fractional OU process satisfying $dZ_t = \kappa(\theta - Z_t)dt + \nu dW_t^H$.

- Time series of the Oxford-Man SPX realised variance as well as implied volatility smiles of the SPX suggest that $H \in (0, 1/2)$: short-memory volatility.
- Is not statistically rejected by Ait-Sahalia-Jacod's test (2009) for Itô diffusions.
- Main drawback: loss of Markovianity ($H \neq 1/2$) rules out PDE techniques, and Monte Carlo is computationally intensive. One way out is an efficient "Hybrid scheme" of Bennedsen, Lunde and Pakkanen (2015).

Implied volatility Rough Bergomi model

The Rough Bergomi model (Bayer-Friz-Gatheral)

Let Z be the process defined pathwise as

$$Z_t := \int_0^t \mathcal{K}_lpha(s,t) \mathrm{d} W_s, \qquad ext{for any } t \geq 0,$$

with $\alpha \in \left(-\frac{1}{2}, 0\right)$, W a standard Brownian motion, and the kernel K_{α} :

$${\mathcal K}_lpha(u,s):=\eta\sqrt{2lpha+1}(s-u)^lpha,\qquad ext{for all } 0\leq u\leq s,$$

for some strictly positive constant η . The rough Bergomi model is then defined as

$$\begin{aligned} X_t &= \int_0^t \sqrt{V_s} \mathrm{d}B_s - \frac{1}{2} \int_0^t V_s \mathrm{d}s, \qquad X_0 = 0, \\ V_t &= V_0 \exp\left(Z_t - \frac{\eta^2}{2} t^{2\alpha+1}\right), \qquad V_0 = 1, \end{aligned}$$

with $B := \rho W + \sqrt{1 - \rho^2} W^{\perp}$, for $\rho \in (-1, 1)$.

Antoine Jacquier Remarks on rough Bergomi: asymptotics and calibration

Implied volatility Rough Bergomi model

Comments on Rough Bergomi

Proposition

- exp(X) is a true martingale.
- For any $t \ge 0$, (Z_t, B_t) is a centered Gaussian random variable with covariance

$$\mathbb{E}(B_t Z_t) = \begin{pmatrix} \eta^2 t^{2\alpha+1} & \varrho t^{\alpha+1} \\ \varrho t^{\alpha+1} & t \end{pmatrix},$$

where $\varrho := \frac{\rho\eta\sqrt{2lpha+1}}{lpha+1}$, and (Z,B) is Gaussian process. Furthermore

$$\mathbb{E}(Z_sZ_t) = \frac{\eta^2(2\alpha+1)}{\alpha+1}(s\wedge t)^{1+\alpha}(s\vee t)^{\alpha}{}_2F_1\left(1,-\alpha,2+\alpha,\frac{s\wedge t}{s\vee t}\right).$$

• $\log(V)$ is almost surely locally γ -Hölder continuous, for all $\gamma \in (0, \alpha + \frac{1}{2})$ $[\alpha = H - 1/2].$

Implied volatility Rough Bergomi model

Remarks

- Z is self-similar;
- Z is the Holmgren-Riemann-Liouville fBm, not the standard (Mandelbrot-van Ness one), and is not stationary;
- Recall that for a standard fBm, for any $u \leq t$,

$$\begin{split} W_t^H - W_u^H &= C_H \left\{ \int_u^t \frac{\mathrm{d} W_s}{(t-s)^{1/2-H}} + \int_{-\infty}^u \left[\frac{1}{(t-s)^{1/2-H}} - \frac{1}{(-s)^{1/2-H}} \right] \mathrm{d} W_s \right\} \\ &= Z_u(t) + G_u(t), \end{split}$$

where $G_u(t) \in \mathcal{F}_u^W$ whereas $Z_u(t) \perp \mathcal{F}_u^W$.

Large deviations Proof

Contents

メロシ スぽシ メモシ 人主シー 注

Introduction Implied volatility Rough Bergomi mod

3 VIX Futures and options Rough Bergomi, version

Large deviations Proof

Quick reminder on (pathwise) Large Deviations

Let \mathscr{E} denote a real, separable Banach Space with norm $\|\cdot\|_{\mathscr{E}}$, and $(\mu_{\varepsilon})_{\varepsilon>0}$ a sequence of probability measures on $(\mathscr{E}, \mathscr{B}(\mathscr{E}))$.

Definition

The family $(\mu_{\varepsilon})_{\varepsilon>0}$ satisfies a large deviations principle (LDP) as ε tends to zero with speed ε^{-1} and rate function Λ if, for any $B \in \mathscr{B}(\mathscr{E})$,

$$-\inf_{\mathfrak{z}\in B^{\circ}}\Lambda(\mathfrak{z})\leq\liminf_{\varepsilon\downarrow 0}\varepsilon\log\left(\mu_{\varepsilon}(B)\right)\leq\limsup_{\varepsilon\downarrow 0}\varepsilon\log\left(\mu_{\varepsilon}(B)\right)\leq-\inf_{\mathfrak{z}\in\overline{B}}\Lambda(\mathfrak{z}).$$

Large deviations Proof

Quick reminder on (pathwise) Large Deviations

Let \mathscr{E} denote a real, separable Banach Space with norm $\|\cdot\|_{\mathscr{E}}$, and $(\mu_{\varepsilon})_{\varepsilon>0}$ a sequence of probability measures on $(\mathscr{E}, \mathscr{B}(\mathscr{E}))$.

Definition

The family $(\mu_{\varepsilon})_{\varepsilon>0}$ satisfies a large deviations principle (LDP) as ε tends to zero with speed ε^{-1} and rate function Λ if, for any $B \in \mathscr{B}(\mathscr{E})$,

$$-\inf_{\mathfrak{z}\in B^{\circ}}\Lambda(\mathfrak{z})\leq\liminf_{\varepsilon\downarrow 0}\varepsilon\log\left(\mu_{\varepsilon}(B)\right)\leq\limsup_{\varepsilon\downarrow 0}\varepsilon\log\left(\mu_{\varepsilon}(B)\right)\leq-\inf_{\mathfrak{z}\in\overline{B}}\Lambda(\mathfrak{z}).$$

Lighter versions:

• Take $\mathscr{E} = \mathbb{R}$, then LDP yields, for any $B \subset \mathbb{R}$,

$$\mu_{\varepsilon}(B) \sim \exp\left\{-\frac{1}{\varepsilon}\inf_{x\in B}\Lambda(x)
ight\}.$$

Large deviations Proof

Quick reminder on (pathwise) Large Deviations

Let \mathscr{E} denote a real, separable Banach Space with norm $\|\cdot\|_{\mathscr{E}}$, and $(\mu_{\varepsilon})_{\varepsilon>0}$ a sequence of probability measures on $(\mathscr{E}, \mathscr{B}(\mathscr{E}))$.

Definition

The family $(\mu_{\varepsilon})_{\varepsilon>0}$ satisfies a large deviations principle (LDP) as ε tends to zero with speed ε^{-1} and rate function Λ if, for any $B \in \mathscr{B}(\mathscr{E})$,

$$-\inf_{\mathfrak{z}\in B^{\diamond}}\Lambda(\mathfrak{z})\leq\liminf_{\varepsilon\downarrow 0}\varepsilon\log\left(\mu_{\varepsilon}(B)\right)\leq\limsup_{\varepsilon\downarrow 0}\varepsilon\log\left(\mu_{\varepsilon}(B)\right)\leq-\inf_{\mathfrak{z}\in\overline{B}}\Lambda(\mathfrak{z}).$$

Lighter versions:

• Take $\mathscr{E} = \mathbb{R}$, then LDP yields, for any $B \subset \mathbb{R}$,

$$\mu_{\varepsilon}(B) \sim \exp\left\{-\frac{1}{\varepsilon}\inf_{x\in B}\Lambda(x)
ight\}.$$

• Take $\mathscr{E} = \mathcal{C}$, the space of continuous paths. LDP yields, for any $B \subset \mathcal{C}$,

$$\mu_{\varepsilon}(B) \sim \exp\left\{-\frac{1}{\varepsilon}\inf_{\varphi\in B}\Lambda(\varphi)
ight\}.$$

Antoine Jacquier

Remarks on rough Bergomi: asymptotics and calibration

Asymptotic behaviour of Rough Bergomi

Rough Bergomi:
$$X_t = \int_0^t \sqrt{V_s} dB_s - \frac{1}{2} \int_0^t V_s ds, \quad V_t = V_0 \exp\left(Z_t - \frac{\eta^2}{2} t^{2\alpha+1}\right).$$

For $t, \varepsilon \geq 0$, define the rescaled random variables:

$$X_t^{\varepsilon} := \varepsilon^{\beta} X_{\varepsilon t}, \quad Z_t^{\varepsilon} := \varepsilon^{\beta/2} Z_t, \quad V_t^{\varepsilon} := \varepsilon^{1+\beta} \exp\left\{Z_t^{\varepsilon} - \frac{\eta^2}{2} (\varepsilon t)^{\beta}\right\}, \quad B_t^{\varepsilon} := \varepsilon^{\beta/2} B_t,$$

where $\beta := 2\alpha + 1 \in (0, 1)$. Note that, for any $t, \varepsilon \geq 0$,

$$Z_t^{\varepsilon} \stackrel{(\mathrm{law})}{=} Z_{\varepsilon t}$$
 and $V_t^{\varepsilon} \stackrel{(\mathrm{law})}{=} \varepsilon^{1+\beta} V_{\varepsilon t}$

so that, for any $t \ge 0$,

$$X_t^arepsilon = \int_0^t \sqrt{V_s^arepsilon} \mathrm{d} B_s^arepsilon - rac{1}{2} \int_0^t V_s^arepsilon \mathrm{d} s.$$

Large deviations Proof

Main result: Large deviations

Theorem (Jacquier-Pakkanen-Stone)

The sequence $(X^{\varepsilon}_{\cdot})_{\varepsilon \geq 0}$ satisfies a LDP with speed $\varepsilon^{-\beta}$ and rate function

$$\Lambda^X(arphi) := \inf \left\{ \Lambda(x,y) : arphi = \int_0^{\cdot} x(s) \mathrm{d} y(s), y \in \mathrm{BV} \cap \mathcal{C}
ight\}.$$

Define the operators (on \mathcal{C}^2 and \mathcal{C} respectively)

$$\mathcal{M}inom{\mathrm{x}}{\mathrm{y}}(t,arepsilon):=inom{(\mathfrak{m}\mathrm{x})(t,arepsilon)}{\mathrm{y}(t)}\quad ext{and}\quad (\mathfrak{m}\mathrm{x})(t,arepsilon):=arepsilon^{1+eta}\exp\left(arepsilon^{eta/2}\mathrm{x}(t)-rac{\eta^2}{2}(arepsilon t)^eta
ight),$$

as well as the function $\Lambda:\mathcal{C}([0,1]^2,\mathbb{R}_+\times\mathbb{R})\to\mathbb{R}_+$ by

$$\Lambda: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \mathsf{inf} \left\{ \widetilde{\Lambda}(\overline{x}, \overline{y}) : \begin{pmatrix} x \\ y \end{pmatrix} = \mathcal{M} \begin{pmatrix} \overline{x} \\ \overline{y} \end{pmatrix} \right\},$$

where $\widetilde{\Lambda}\begin{pmatrix} x\\ y \end{pmatrix} := \frac{1}{2} \left\| \begin{pmatrix} x\\ y \end{pmatrix} \right\|_{\mathscr{H}}^2$, and \mathscr{H} is the RKHS of the measure induced by (Z, B).

Antoine Jacquier Remarks on rough Bergomi: asymptotics and calibration

イロン (日) イヨン (ヨン) ヨー クタの

Large deviations Proof

Corollaries

Corollary (Small-time behaviour)

The process $(t^{\beta}X_t)_{t\geq 0}$ satisfies a LDP on \mathbb{R} with speed $t^{-\beta}$ and rate function Λ^X .

Proof: By self-similarity.

Corollary (Implied volatility)

The following holds for all $x \neq 0$ ($\beta \in (0, 1)$):

$$\lim_{t\downarrow 0} t^{1+\beta} \widehat{\sigma} \left(x t^{-\beta}, t \right)^2 = \frac{1}{2} \frac{|x|^2}{\inf_{y \ge x} \Lambda^X(y)}.$$

Proof Part 1: Reproducing Kernel Hilbert Space

Let $(\mathscr{E}, \|\cdot\|_{\mathscr{E}})$ be a real, separable Banach Space, and \mathscr{E}^* its topological dual, with duality relationship $\langle \cdot, \cdot \rangle := \langle \cdot, \cdot \rangle_{\mathscr{E}^* \mathscr{E}}$. For a Gaussian measure μ on \mathscr{E} , introduce the bounded, linear operator $\Gamma : \mathscr{E}^* \to \mathscr{E}$ as $\Gamma(f^*) := \int_{\mathscr{E}} \langle f^*, f \rangle f \mu(\mathrm{d}f)$.

Definition

The reproducing kernel Hilbert space (RKHS) \mathscr{H}_{μ} of μ is defined as the completion of $\Gamma(\mathscr{E}^*)$ with the inner product $\langle \Gamma(f^*), \Gamma(g^*) \rangle_{\mathscr{H}_{\mu}} := \int_{\mathscr{E}} \langle f^*, f \rangle \langle g^*, f \rangle_{\mathscr{E}^* \mathscr{E}} \mu(\mathrm{d}f).$

Proposition

The RKHS of the induced measure (on C^2) of the two-dimensional process (Z, B) is

$$\mathscr{H} = \left\{ \left(\int_0^{\cdot} K_{\alpha}(u, \cdot) f(u) \mathrm{d}u, \int_0^{\cdot} \rho f(u) \mathrm{d}u \right) : f \in \mathrm{L}^2 \right\},$$

with inner product

$$\left\langle \left(\int_{0}^{\cdot} K_{\alpha}(u, \cdot) f_{1}(u) \mathrm{d}u \right), \left(\int_{0}^{\cdot} K_{\alpha}(u, \cdot) f_{2}(u) \mathrm{d}u \right) \right\rangle_{\mathscr{H}} := \langle f_{1}, f_{2} \rangle_{\mathrm{L}^{2}}.$$

Antoine Jacquier

Remarks on rough Bergomi: asymptotics and calibration

Large deviations Proof

Proof Part 2: Contraction mappings

• Following Deuschel-Stroock (for Gaussian measures), the sequence $(Z^{\varepsilon}, B^{\varepsilon})_{\varepsilon>0}$ satisfies a LDP with speed $\varepsilon^{-\beta}$ and rate function

$$\Lambda^*(z_y^x) = \begin{cases} \frac{1}{2} \left\| z_y^x \right\|_{\mathscr{H}}^2, & \text{if } z_y^x \in \mathscr{H}, \\ +\infty, & \text{otherwise.} \end{cases}$$

• Pathwise, we view $t \mapsto (Z_t^{\varepsilon}, B_t^{\varepsilon})^{\top}$ as an element of C^2 ; $\begin{pmatrix} v_t^{\varepsilon} \\ B_t^{\varepsilon} \end{pmatrix} = \mathcal{M} \begin{pmatrix} Z^{\varepsilon} \\ B^{\varepsilon} \end{pmatrix} (t, \varepsilon)$. \mathcal{M} is a continuous operator with respect to the $C(\mathcal{T}^2, \mathbb{R}_+ \times \mathbb{R})$ norm $\|\cdot\|_{\infty}$.

Large deviations **Proof**

Proof Part 3: LDP for stochastic integrals

- Claim: the sequence $(\mathbb{I}(v^{\varepsilon}, B^{\varepsilon}))_{\varepsilon \geq 0} := (\int_0^{\cdot} \sqrt{v_s^{\varepsilon}} dB_s^{\varepsilon})_{\varepsilon \geq 0}$ satisfies a LDP.
 - $B^{\varepsilon} = \varepsilon^{\alpha+1/2}B$, so that

$$\mathbb{I}(v^{\varepsilon}, B^{\varepsilon}) = \mathbb{I}(\varepsilon^{2\alpha}v^{\varepsilon}, \sqrt{\varepsilon}B)$$

holds a.s.;

- the sequence of (semi)-martingales ($\sqrt{\varepsilon}B$) is uniformly exponentially tight;
- the sequence (√ε^{2α}ν^ε)_{ε>0} is càdlàg, and (ℱ_t)-adapted;
- Garcia's Theorem implies that $(\mathbb{I}(v^{\varepsilon}, B^{\varepsilon}))_{\varepsilon \geq 0}$ satisfies a LDP with speed $\varepsilon^{-(1+2\alpha)}$ and rate function

$$\Lambda^X(\varphi) = \inf \left\{ \Lambda(\mathbf{z}_y^x) : \varphi = \mathbb{I}(x, y), y \in \mathrm{BV} \cap \mathcal{C} \right\}.$$

• Final step: LDP for $X_{\cdot}^{\varepsilon} = \int_{0}^{\cdot} \sqrt{v_{s}^{\varepsilon}} \mathrm{d}B_{s}^{\varepsilon} - \frac{1}{2} \int_{0}^{\cdot} v_{s}^{\varepsilon} \mathrm{d}s$. For any $\delta > 0$,

$$\limsup_{\varepsilon \downarrow 0} \varepsilon \log \mathbb{P}\left(|\mathbb{I}(v^{\varepsilon}, B^{\varepsilon})(1) - X_1^{\varepsilon}| > \delta \right) = -\infty$$

and the theorem follows by exponential equivalence.

Rough Bergomi, version 2

Contents

メロシ スぽシ メモシ 人主シー 注

Introduction Implied volatilit

Large deviations Large deviations Proof

Rough Bergomi, version 2

Rough Bergomi, version 2

$$\begin{split} \mathrm{d} X_t &= -\frac{1}{2} V_t \mathrm{d} t + \sqrt{V_t} \mathrm{d} W_t, \quad X_0 = 0 \\ V_t &= \xi_0(t) \mathcal{E}(2\nu C_H \mathcal{V}_t), \qquad V_0 > 0, \end{split}$$

• The process \mathcal{V} , defined as

$$\mathcal{V}_t := \int_0^t (t-u)^{H_-} \mathrm{d} Z_u,$$

is a centred Gaussian process with covariance structure

$$\mathbb{E}(\mathcal{V}_t \mathcal{V}_s) = s^{2H} \int_0^1 \left(\frac{t}{s} - u\right)^{H_-} (1 - u)^{H_-} du, \quad \text{for any } s, t \in [0, 1];$$

- $H_{\pm} := H \pm \frac{1}{2};$
- (ξ₀(t))_{t≥0} represents the initial forward variance curve: ξ₀(t) = d/dt (tσ₀²(t)), where σ₀²(t) is the fair strike of a variance swap with maturity t.

Rough Bergomi, version 2

VIX Futures

• For a fixed maturity $T \ge 0$, define the VIX at time T via the continuous-time monitoring formula

$$\mathrm{VIX}_{\mathcal{T}}^2 := \mathbb{E}\left(\left.\frac{1}{\Delta}\int_{\mathcal{T}}^{\mathcal{T}+\Delta}\mathrm{d}\langle X_s,X_s\rangle\mathrm{d}s\right|\mathcal{F}_{\mathcal{T}}\right),$$

where Δ is equal to 30 days;

• Risk-neutral formula for the VIX future \mathfrak{V}_T with maturity T is then given by

$$\mathfrak{V}_{\mathcal{T}} := \mathbb{E}\left(\mathrm{VIX}_{\mathcal{T}}|\mathcal{F}_0\right) = \mathbb{E}\left(\sqrt{\frac{1}{\Delta}\int_{\mathcal{T}}^{\mathcal{T}+\Delta}\xi_{\mathcal{T}}(s)\mathrm{d}s}\middle|\,\mathcal{F}_0
ight);$$

•
$$\eta_T(t) := \exp\left(2\nu C_H \int_0^T (t-u)^{H_-} \mathrm{d} Z_u\right) \in \mathcal{F}_T$$
 is lognormal, for $t \geq T$.

This is the main challenge for simulation, and we use the hybrid scheme by Bennedsen-Lunde-Pakkanen (2016). However, since it is independent of ξ_0 , robustness of simulation schemes for the VIX will not be affected by the qualitative properties of the initial forward variance curve.

Rough Bergomi, version 2

VIX Futures: dynamics and bounds

Proposition

The VIX dynamics are given by

$$\operatorname{VIX}_{T}^{2} = \frac{1}{\Delta} \int_{T}^{T+\Delta} \xi_{0}(t) \eta_{T}(t) \exp\left(\frac{\nu^{2} C_{H}^{2}}{H} \left[(t-T)^{2H} - t^{2H}\right]\right) \mathrm{d}t,$$

and the forward variance curve ξ_T in the rBergomi model admits the representation

$$\xi_T(t) = \xi_0(t)\eta_T(t)\exp\left(\frac{\nu^2 C_H^2}{H}\left[(t-T)^{2H}-t^{2H}\right]\right), \quad \text{for any } t \ge T.$$

Theorem

The following bounds hold for VIX Futures $\mathfrak{V}_{\mathcal{T}} := \mathbb{E}(\operatorname{VIX}_{\mathcal{T}}|\mathcal{F}_0)$:

$$\frac{1}{\Delta} \int_{T}^{T+\Delta} \sqrt{\xi_0(t)} \exp\left\{\frac{\nu^2 C_H^2}{4H} \left[(t-T)^{2H} - t^{2H}\right]\right\} \mathrm{d}t \leq \mathfrak{V}_T \leq \left\{\frac{1}{\Delta} \int_{T}^{T+\Delta} \xi_0(s) \mathrm{d}s\right\}^{\frac{1}{2}}.$$

Antoine Jacquier

Remarks on rough Bergomi: asymptotics and calibration

Rough Bergomi, version 2

Numerical remark

Scenarios for the initial forward variance curve:

 $[1]: \ \xi_0(t) = 0.234^2; \quad [2]: \ \xi_0(t) = 0.234^2(1+t)^2; \quad [3]: \ \xi_0(t) = 0.234^2\sqrt{1+t}.$

Antoine Jacquier

Remarks on rough Bergomi: asymptotics and calibration

Rough Bergomi, version 2

Further properties of the VIX

Proposition

The following hold:

$$\begin{split} \sigma^2 &:= \mathbb{V}(\log(\Delta \text{VIX}_T^2)) = -2\log \mathbb{E}(\Delta \text{VIX}_T^2) + \log \mathbb{E}[(\Delta \text{VIX}_T^2)^2] =: -2\log \mathfrak{E}_1 + \log \mathfrak{E}_2, \\ \mu &:= \mathbb{E}(\log(\Delta \text{VIX}_T^2)) = \log \mathfrak{E}_1 - \frac{\sigma^2}{2}. \\ \text{with } \mathcal{T} &:= [T, T + \Delta], \text{ and} \\ \mathfrak{E}_1 &= \int_{\mathcal{T}} \xi_0(t) \mathrm{d}t, \\ \mathfrak{E}_2 &= \int_{\mathcal{T}^2} \xi_0(u) \xi_0(t) \exp\left\{\frac{\nu^2 C_H^2}{H} \left[(u - T)^{2H} + (t - T)^{2H} - u^{2H} - t^{2H}\right]\right\} \mathrm{e}^{\overline{\Theta}_{u,t}} \mathrm{d}u \mathrm{d}t. \end{split}$$

where $\overline{\Theta}_{u,t}$ is equal to zero if u = t and otherwise equal to $\Theta_{u \lor t, u \land t}$, available in closed form in terms of the hypergeometric ${}_2F_1$ function.

Rough Bergomi, version 2

Options on VIX

Assumption A: ΔVIX_T^2 is log-normal.

Proposition

• A VIX future is worth

$$\mathfrak{V}_{\mathcal{T}} = \begin{cases} \sqrt{\frac{1}{\Delta} \int_{\mathcal{T}}^{\mathcal{T}+\Delta} \xi_0(t) \mathrm{d}t} \exp\left(-\frac{\sigma^2}{8}\right), & \text{under Assumption A} \\ \sqrt{\frac{1}{\Delta} \int_{\mathcal{T}}^{\mathcal{T}+\Delta} \xi_0(t) \mathrm{d}t} \exp\left(-\frac{\tilde{\sigma}^2}{8}\right), & \text{in [BFG15]}. \end{cases}$$

For 0 ≤ t ≤ T, let 𝔅_T(t) := 𝔅 (VIX_T |𝓕_t) denote the price at time t of a VIX future maturing at T. Under Assumption A,

$$\mathbb{E}\left[(\mathfrak{V}_{\mathcal{T}}(\mathcal{T})-\mathcal{K})_{+}|\mathcal{F}_{0}\right]=\sqrt{\frac{1}{\Delta}\int_{\mathcal{T}}^{\mathcal{T}+\Delta}\xi_{0}(t)\mathrm{d}t}\exp\left(-\frac{\sigma^{2}}{8}\right)\Phi(d_{1})-\mathcal{K}\Phi(d_{2}),$$

where $\widetilde{K} := \frac{1}{\sigma} [\log(K^2 \Delta) - \log \int_T^{T+\Delta} \xi_0(t) dt + \frac{\sigma^2}{2}], \ d_1 := -\widetilde{K} + \frac{1}{2}\sigma, \ d_2 := -\widetilde{K}.$

Rough Bergomi, version 2

Numerical tests: VIX Futures

Figure: Log-normal approximations vs. simulations

Antoine Jacquier Remarks on rough Bergomi: asymptotics and calibration

イロン イボン イモン イモン 一定・

Rough Bergomi, version 2

VIX Futures Calibration

Calibration Goal:

$$\min_{\nu,H}\sum_{i=1}^{N}(\mathfrak{V}_{T_{i}}-\mathfrak{F}_{i})^{2},$$

where $(\mathfrak{F}_i)_{i=1,...,N}$ are the observed Futures prices on the time grid $T_1 < ... < T_N$, $\mathfrak{V}_{T_i} = \sqrt{\frac{1}{\Delta} \int_{T_i}^{T_i + \Delta} \xi_0(t) dt} \exp\left(-\frac{\sigma_i^2}{8}\right).$

Obtaining the initial forward variance curve: ξ_0 depends on the current term structure of variance swaps, traded OTC. By replication, we calibrate a given implied volatility surface (eSSVI) and use it for interpolation/extrapolation:

$$\sigma_{\rm BS}^2(t,k)t := \frac{\theta_t}{2} \left\{ 1 + \rho(\theta_t)\varphi(\theta_t)k + \sqrt{\left(\varphi(\theta_t)k + \rho(\theta_t)\right)^2 + 1 - \rho(\theta_t)^2} \right\},$$

 θ : observed ATM variance curve; shape function: $\varphi(\theta) = \eta \theta^{-\lambda} (1+\theta)^{\lambda-1}$. Correlation parameter:

$$ho(heta)=(A-C)\mathrm{e}^{-B heta}+C,\qquad ext{for }(A,C)\in(-1,1)^2,B\geq0,$$

ensuring that $|\rho(\cdot)| \leq 1$. Fair strike (in total variance) of a variance swap:

$$\sigma_0(t)^2t:=-2\mathbb{E}\log\left(rac{S_t}{S_0}
ight)=rac{b_t^2+2a_t(c_t+ heta_t)}{2a_t^2},$$

and thus $\xi_0(t) = \frac{\mathrm{d}}{\mathrm{d}t} \left(t\sigma_0^2(t) \right) = \sigma_0^2(t) + t \frac{\mathrm{d}}{\mathrm{d}t} \sigma_0^2(t).$

Remarks on rough Bergomi: asymptotics and calibration

Rough Bergomi, version 2

Numerical results: SPX Fit

Figure: Calibration results on 4/12/2015 using traded SPX options.

Rough Bergomi, version 2

VIX Futures calibration

Algorithm

- (i) Calibrate eSSVI to available SPX option data;
- (ii) compute the variance swap term structure $(\sigma_0(t)^2)_{t>0}$;
- (iii) extract the initial forward variance curve, $\xi_0(\cdot)$;

(iv) minimise (over
$$\nu$$
, H) the objective function $\sum_{i=1}^{N} (\mathfrak{V}_{\mathcal{T}_i} - \mathfrak{F}_i)^2$.

Rough Bergomi, version 2

VIX Futures calibration

Figure: VIX Futures calibration on 4/12/2015. Optimal parameters: $(H, \nu) = (0.09237, 1.004)$.

Figure: VIX Futures calibration on 4/1/2016. Optimal parameters: $(H, \nu) = (0.0509, 1.2937)$.

Antoine Jacquier

Remarks on rough Bergomi: asymptotics and calibration

Rough Bergomi, version 2

Is *H* consistent between VIX Futures and SPX? We calibrate the model on 4/12/2015 by fixing H = 0.09237 obtained through VIX.

Figure: Calibration of SPX smiles on 4/12/2015. Calibrated parameters: $(\nu, \rho) = (1.19, -0.999)$.

Remark: Regarding ν , we obtain a 20% difference between the one obtained through VIX calibration and the one obtained through SPX. This suggests that the volatility of volatility in the SPX market is 20% higher when compared to VIX. Nevertheless, we emphasise the importance of an accurate ξ_0 curve which could improve the fit to SPX and reduce the difference in ν to potentially unify a joint model.

Elements of bibliography

- C. Bayer, P. Friz, J. Gatheral. Pricing under rough volatility. *Quantitative Finance*, 2015.
- J.D. Deuschel, D. Stroock. Large deviations.
- J. Garcia. A large deviations principle for stochastic integrals. *Journal of Theoretical Probability*, 2008.
- J. Gatheral, T. Jaisson, M. Rosenbaum. Volatility is rough. arXiv, 2014.
- A. Jacquier, A. Muguruza, C. Martini: Pricing VIX under rBergomi. In progress.
- A. Jacquier, M. Pakkanen, H. Stone: Pathwise large deviations for the rough Bergomi model. *In progress.*