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Martingale Optimal Transport (MOT) Problem in One dimension

» Borel probability measures p, v on R in convex order: pu <. v
» (continuous) cost functionc: R x R — R

» MT(u, v): probability measures = on R x R which not only project to the
marginals p, v, but also its disintegration (7x)xcr has barycenter at x
(martingale constraint):

f(x) < /R f(y) drx(y) VF convex.

» Disintegration = Conditional probability: mx(A) = P(Y € A|X = x).
Study the optimal solutions of the minimization problem

min /RXRC(X7 y)dn(x,y).

mEMT(,v)



Probabilistic statement of MOT

v

(22, F,P) : probability space
» X:Q—R,Y:Q— R:random variables

\{

cost functionc: R xR — R
Law(X) = u, Law(Y) =v
E(Y|X) = X.

v

v

Study the one-step martingales (stocks) (X, Y) with prescribed marginals,
which minimize the expected cost (option price)

min Erc(X,Y).
Xrop,Yrov, E(Y|X)=X

Motivation:

» [Model-free Finance] find the minimum price of option c(x, y) given
market information p, v, that is, given the prices of call / put options.



A structure result in 1-dimension

Theorem (Hobson-Neuberger-Klimmek, Beiglbdck-Juillet *13)
Letc(x,y) = £|x — y| and d = 1 (In financial term, this means that the option
|X — Y| depends only on one stock process), and assume . is dispersed

(L << L'). Then the optimal martingale transport = is unique for any given v,
and it exhibits an extremal property: for each x € R, the conditional
probability wx is concentrated at two boundary points of an interval.

Question: What is a right generalization of this theorem in higher dimension?



Multi-Martingale Optimal Transport (MMQOT) Problem [L. *16]

» probability measures pj, v; on R in convex order, i=1,2,...d

» cost function (option) ¢ : R x RY - R

» (X, Y;): one-step martingales (E( Y;|X;) = X;) with the prescribed
marginal laws X; ~ pjand Y ~ v;

> pi= (1, ftd), V= (V1. Vd)

» MMT(y, v): the set of probability measures on R? x R? such that each
m € MMT(p, v) is the joint law of martingales (X;, Y;)i<a having (ui, vi)i<da
as its marginals, respectively.

Study the optimal solutions of the minimization problem
Minimize Cost[r] = / c(x,y)dn(x,y) over m¢& MMT(u,v).
RY x R4

Motivation:
» [Finance] find the minimum price of the option whose value depends on
many stocks (Xj, Yi), i = 1,..., d, given the information that can be
observed from the market.



Probabilistic description of MMOT

v

(2, F,P) : probability space

Xi:Q—=R, Y :Q— R:random variables, i = 1,2, ....d
cost function ¢ : R x R — R

Law(X;) = pi, Law(Y;) = v

E(Y|X) = X, where X = (Xi,...,X3), Y = (Y1, ..., Ya)

v

v

v

v

Study the one-step martingales (stocks) (X, Y) with prescribed marginals,
which minimize the expected cost (option price)

min Erc(X,Y).
Xieopi, Yimovj, E(Y]X)=X



Extremal structure of MMOT holds true in every dimension

Theorem [L.’16] Assume:
» 1 <c v; (not necessarily irreducible)
> << L

v

c(x,y) = £||x — y|| where || - || is any strictly convex norm on R®

v

7 = Law(X, Y) is any minimizer of MMOT with copula 7' = Law(X)

Then: for any disintegration (mx)x of 7 with respect to 7', the support of 7,
coincides with the extreme points of the closed convex hull of itself:

supp x = Ext (conv(supp7x)), 7' — a.e.x.



Extremal structure of MMOT holds true in every dimension

Theorem [L.’16] Assume:

» 1 <c v; (not necessarily irreducible)
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c(x,y) = £||x — y|| where || - || is any strictly convex norm on R®
7 = Law(X, Y) is any minimizer of MMOT with copula 7' = Law(X)

v

v

Then: for any disintegration (mx)x of 7 with respect to 7', the support of 7,
coincides with the extreme points of the closed convex hull of itself:

supp x = Ext (conv(supp7x)), 7' — a.e.x.

» Literature in OT:
Sudakov, Evans, Gangbo, McCann, Ambrosio, Kirchheim, Pratelli,
Caffarelli, Feldman, Otto, Kinderlehrer, Jordan, Bianchini, Cavalletti, Ma,
Trudinger, Wang, Champion, De Pascale, and others...



How to obtain such structure result? Study the Dual Optimizer of MOT

» We say that a triple of functions (¢, ¢, h) is a dual maximizer of the MOT
problem, if for every minimizer = of MOT we have

o) + () +h(x) - (y —x) <clx,y) vxeR,vyeR,  (0.1)
p(X) + () +h(x)-(y =x) =c(x,y) w—ae(xy). (0.2)

> &(x) +¥(y) + h(x) - (¥ — x) can be interpreted as an optimal
subhedging strategy for the option c(x, y).



Irreducibility of (u,v) is essential to achieve duality in MOT

» Beiglbdck-Juillet, Beiglbdck-Nutz-Touzi showed that in dimension one
(d = 1), duality is attained if the marginals (u,v) are irreducible.

» The irreducibility of (u, v) is characterized by their potential functions

0.0 = [l =ylduy), w00:= [ 1x=yldu(y).

» This is also where the OT and MOT are divergent: in OT theory
essentially no relation between p, v is required for duality.

» The seemingly harmless linear term h(x) - (y — x) drastically changes
the picture.



Duality in MMOT (is also possible!)

Theorem [L.’16] Assume:
> (wi,vj)isirreducible, Vi=1,....d
» 7 is any minimizer of MMOT

Then: there exist a bunch of functions ¢/, : R — R, i=1,....d, h: R — R’
which is a dual maximizer:

d d
Do dilxi) + > wiy) +h(x) - (y —x) < e(x,y) VxR, vy eR’,

i=1 i=1

d d
Z@/(X/) + ZU’(}’/) +h(x)-(y—x)=clx,y) m—ae(xy).
i=1 i=1



Duality in MMOT (is also possible!)

Theorem [L.’16] Assume:

> (wi,vj)isirreducible, Vi=1,....d
» 7 is any minimizer of MMOT

Then: there exist a bunch of functions ¢;,%; : R — R, i=1,....d, h: R — R*
which is a dual maximizer:

d
Gi(x) + > i) + h(x) - (y —x) < c(x,y) ¥x€R’ Vy R,

1 i=1

M=

M

Gix) + S ) +hx) - (v = x) = o(x,y) 7 ae.(x.y).

i=1 i=1

» But not only this, we find that Law(X) and Law(Y) also solve a classical
dual optimal transport problem:



Law(X), Law(Y) are also optimizers for OT
Theorem [L.’16] Assume:
> (¢i, i, hi)i<a is @ dual maximizer
» 7 = Law(X, Y) is any minimizer of MMOT

Then: its first and second copulas 7', 72 (i.e. 7' = Law(X), 72 = Law(Y))

solve the dual optimal transport problem with respect to the costs «, 3

respectively:

> ix) <alx) wi—aex Vie(d), and > ¢i(x)=a(x) = —aex,
i i

Zw;(y;) >pB(y) vi—aey Vie(d), and Z’L/)i(}/i) =p(y) n°—ae.y.
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» Here the functions o : R — R, 3 : RY — R are naturally defined in

terms of the function y — 27:1 ¥i(y;) and are called the martingale
Legendre transform. (Ghoussoub-Kim-L. ’15)



Law(X), Law(Y) are also optimizers for OT
Theorem [L.’16] Assume:

> (¢i, i, hi)i<a is @ dual maximizer
» 7 = Law(X, Y) is any minimizer of MMOT

Then: its first and second copulas 7', 72 (i.e. 7' = Law(X), 72 = Law(Y))
solve the dual optimal transport problem with respect to the costs «, 3
respectively:

Z¢,(x,)ga(x) pi—ae.x; Vie(d), and Z¢,(x,-):a(x) ' —ae.x,

Zw/(y;) >pB(y) vi—aey Vie(d), and Z’L/)i(}/i) =p(y) n°—ae.y.

» Here the functions o : R — R, 3 : RY — R are naturally defined in
terms of the function y — 27:1 ¥i(y;) and are called the martingale
Legendre transform. (Ghoussoub-Kim-L. ’15)

» OT theory can enter for the study of the structure of Law(X), Law(Y).



Conclusion:

» The duality attainment results presented so far shall serve as the
cornerstones for further development of the MOT / MMOT theory, as
it did so in the classical OT theory.

» As the classical optimal transport theory (in higher dimensions)
has made important contributions to many areas of mathematics
and economics, | believe that this new development of probabilistic
optimal embedding theory in higher dimensions will have
far-reaching consequences as well.



Thank You Very Much!



