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Martingale Optimal Transport (MOT) Problem in One dimension

I Borel probability measures µ, ν on R in convex order: µ ≤c ν

I (continuous) cost function c : R× R→ R

I MT(µ, ν): probability measures π on R× R which not only project to the
marginals µ, ν, but also its disintegration (πx )x∈R has barycenter at x
(martingale constraint):

f (x) ≤
∫

R
f (y) dπx (y) ∀f convex.

I Disintegration = Conditional probability: πx (A) = P(Y ∈ A|X = x).

Study the optimal solutions of the minimization problem

min
π∈MT(µ,ν)

∫
R×R

c(x , y)dπ(x , y).



Probabilistic statement of MOT

I (Ω,F ,P) : probability space
I X : Ω→ R, Y : Ω→ R : random variables
I cost function c : R× R→ R
I Law(X ) = µ, Law(Y ) = ν

I E(Y |X ) = X .

Study the one-step martingales (stocks) (X ,Y ) with prescribed marginals,
which minimize the expected cost (option price)

min
X∼µ,Y∼ν,E(Y |X)=X

EPc(X ,Y ).

Motivation:
I [Model-free Finance] find the minimum price of option c(x , y) given

market information µ, ν, that is, given the prices of call / put options.



A structure result in 1-dimension

Theorem (Hobson-Neuberger-Klimmek, Beiglböck-Juillet ’13)
Let c(x , y) = ±|x − y | and d = 1 (In financial term, this means that the option
|X − Y | depends only on one stock process), and assume µ is dispersed
(µ << L1). Then the optimal martingale transport π is unique for any given ν,
and it exhibits an extremal property: for each x ∈ R, the conditional
probability πx is concentrated at two boundary points of an interval.

Question: What is a right generalization of this theorem in higher dimension?



Multi-Martingale Optimal Transport (MMOT) Problem [L. ’16]

I probability measures µi , νi on R in convex order, i=1,2,...,d
I cost function (option) c : Rd × Rd → R
I (Xi ,Yi ): one-step martingales (E(Yi |Xi ) = Xi ) with the prescribed

marginal laws Xi ∼ µi and Yi ∼ νi

I µ := (µ1, ..., µd ), ν := (ν1, ..., νd )

I MMT(µ, ν): the set of probability measures on Rd × Rd such that each
π ∈ MMT(µ, ν) is the joint law of martingales (Xi ,Yi )i≤d having (µi , νi )i≤d

as its marginals, respectively.

Study the optimal solutions of the minimization problem

Minimize Cost[π] =

∫
Rd×Rd

c(x , y) dπ(x , y) over π ∈ MMT(µ, ν).

Motivation:
I [Finance] find the minimum price of the option whose value depends on

many stocks (Xi ,Yi ), i = 1, ..., d , given the information that can be
observed from the market.



Probabilistic description of MMOT

I (Ω,F ,P) : probability space
I Xi : Ω→ R, Yi : Ω→ R : random variables, i = 1, 2, ..., d
I cost function c : Rd × Rd → R
I Law(Xi ) = µi , Law(Yi ) = νi

I E(Y |X ) = X , where X = (X1, ...,Xd ), Y = (Y1, ...,Yd )

Study the one-step martingales (stocks) (X ,Y ) with prescribed marginals,
which minimize the expected cost (option price)

min
Xi∼µi ,Yi∼νi ,E(Y |X)=X

EPc(X ,Y ).



Extremal structure of MMOT holds true in every dimension

Theorem [L. ’16] Assume:

I µi ≤c νi (not necessarily irreducible)
I µi << L1

I c(x , y) = ±||x − y || where || · || is any strictly convex norm on Rd

I π = Law(X ,Y ) is any minimizer of MMOT with copula π1 = Law(X )

Then: for any disintegration (πx )x of π with respect to π1, the support of πx

coincides with the extreme points of the closed convex hull of itself:

suppπx = Ext
(
conv(suppπx )

)
, π1 − a.e. x .

I Literature in OT:
Sudakov, Evans, Gangbo, McCann, Ambrosio, Kirchheim, Pratelli,
Caffarelli, Feldman, Otto, Kinderlehrer, Jordan, Bianchini, Cavalletti, Ma,
Trudinger, Wang, Champion, De Pascale, and others...
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How to obtain such structure result? Study the Dual Optimizer of MOT

I We say that a triple of functions (φ, ψ, h) is a dual maximizer of the MOT
problem, if for every minimizer π of MOT we have

φ(x) + ψ(y) + h(x) · (y − x) ≤ c(x , y) ∀x ∈ R, ∀y ∈ R, (0.1)

φ(x) + ψ(y) + h(x) · (y − x) = c(x , y) π − a.e. (x , y). (0.2)

I φ(x) + ψ(y) + h(x) · (y − x) can be interpreted as an optimal
subhedging strategy for the option c(x , y).



Irreducibility of (µ, ν) is essential to achieve duality in MOT

I Beiglböck-Juillet, Beiglböck-Nutz-Touzi showed that in dimension one
(d = 1), duality is attained if the marginals (µ, ν) are irreducible.

I The irreducibility of (µ, ν) is characterized by their potential functions

uµ(x) :=

∫
|x − y | dµ(y), uν(x) :=

∫
|x − y | dν(y).

I This is also where the OT and MOT are divergent: in OT theory
essentially no relation between µ, ν is required for duality.

I The seemingly harmless linear term h(x) · (y − x) drastically changes
the picture.



Duality in MMOT (is also possible!)

Theorem [L. ’16] Assume:

I (µi , νi ) is irreducible, ∀i = 1, ..., d
I π is any minimizer of MMOT

Then: there exist a bunch of functions φi , ψi : R→ R, i=1,...,d, h : Rd → Rd

which is a dual maximizer:

d∑
i=1

φi (xi ) +
d∑

i=1

ψi (yi ) + h(x) · (y − x) ≤ c(x , y) ∀x ∈ Rd , ∀y ∈ Rd ,

d∑
i=1

φi (xi ) +
d∑

i=1

ψ(yi ) + h(x) · (y − x) = c(x , y) π − a.e. (x , y).

I But not only this, we find that Law(X ) and Law(Y ) also solve a classical
dual optimal transport problem:
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Law(X ), Law(Y ) are also optimizers for OT

Theorem [L. ’16] Assume:

I (φi , ψi , hi )i≤d is a dual maximizer
I π = Law(X ,Y ) is any minimizer of MMOT

Then: its first and second copulas π1, π2 (i.e. π1 = Law(X ), π2 = Law(Y ))
solve the dual optimal transport problem with respect to the costs α, β
respectively:∑

i

φi (xi ) ≤ α(x) µi − a.e. xi ∀i ∈ (d), and
∑

i

φi (xi ) = α(x) π1 − a.e. x ,∑
i

ψi (yi ) ≥ β(y) νi − a.e. yi ∀i ∈ (d), and
∑

i

ψi (yi ) = β(y) π2 − a.e. y .

I Here the functions α : Rd → R, β : Rd → R are naturally defined in
terms of the function y 7→

∑d
i=1 ψi (yi ) and are called the martingale

Legendre transform. (Ghoussoub-Kim-L. ’15)

I OT theory can enter for the study of the structure of Law(X ), Law(Y ).
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Conclusion:

I The duality attainment results presented so far shall serve as the
cornerstones for further development of the MOT / MMOT theory, as
it did so in the classical OT theory.

I As the classical optimal transport theory (in higher dimensions)
has made important contributions to many areas of mathematics
and economics, I believe that this new development of probabilistic
optimal embedding theory in higher dimensions will have
far-reaching consequences as well.



Thank You Very Much!


