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Causal optimal transport Value of additional information

Main questions

Given B, Brownian motion in its own filtration F B , and given a
bigger filtration:

Q1: When does B remain a semimartingale? In particular, when
does it have an absolutely continuous finite variation part?

↪→ same questions for any continuous semimartingale

Q2: How to estimate the value of the additional information in
terms of stochastic optimization problems (optimal value w.r.t.
small & big filtration)?

→ Both questions can be answered via causal optimal transport.
Today we will concentrate on Q2.
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Optimal transport

Monge-Kantorovich transport: given two Polish probability
spaces (X, µ), (Y, ν), “move the mass” from µ to ν so as to
minimize the cost of transportation c : X ×Y → R ∪ {∞}:

inf
{
Eπ[c(x, y)] : π ∈ Π(µ, ν)

}
,

Π(µ, ν): probability measures on X ×Y with marginals µ and ν.

Martingale transport: T1- and T2-call prices⇒ ST1 ∼ µ, ST2 ∼ ν.
We “move ST1 to ST2” along a martingale. Robust price of a claim:

inf
{
Eπ[c(ST1 ,ST2)] : π ∈ Π(µ, ν), π is a martingale

}
, c = payoff.

Causal transport: We will “move processes” (Xt )t → (Yt )t along
causal transport plans:

inf
{
Eπ[c(X ,Y)] : π ∈ Π(µ, ν), π is causal

}
, c =?.
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Causal optimal transport

Polish probability spaces (X, µ), (Y, ν), time horizon T < ∞

Right-continuous filtrations F X= (F Xt )t∈[0,T ],F
Y= (F Yt )t∈[0,T ]

Definition ( Causal transport plans ΠF
X,F Y(µ, ν) )

A transport plan π ∈ Π(µ, ν) is called causal between (X,F X, µ)
and (Y,F Y, ν) if, for all t ∈ [0,T ] and D ∈ F Yt , the map

X 3 x 7→ πx(D)

is measurable w.t.to F Xt (πx regular conditional kernel w.r.t. X).

Causal optimal transport problem:

inf
{
Eπ[c(X ,Y)] : π ∈ Π(µ, ν), π is causal

}
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Causal optimal transport

The concept goes back to Yamada-Watanabe (1971) criterion
on solutions of SDEs; see also Jacod (1980), Kurtz (2014),
Lassalle (2015), Carmona et al. (2016), Backhoff et al. (2016).

Example (Yamada-Watanabe’71)

Assume weak-existence of the solution to the SDE:

dYt = σ(Yt )dBt + b(Yt )dt , b , σ Borel measurable.

Then (B ,Y)#P is a causal plan between (C[0,∞),F ,B#P) and
(C[0,∞),F ,Y#P), where F is the canonical filtration on C[0,∞).

From a transport point of view: from an observed trajectory of B,
the ”mass” can be split at each moment of time into Y only based
on the information available up to that time. When there is no
splitting of mass (Monge transport), a causal plan is then an actual
mapping which is further adapted, i.e. strong solution Y = F(B).
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Then (B ,Y)#P is a causal plan between (C[0,∞),F ,B#P) and
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Here same filtration. We will instead consider different
filtrations (filtration enlargement).
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Causal transport on path space

Our framework:

X = Y = C := C0([0,T ])

W coordinate process on C: Wt (ω) = ωt

F X= F filtration generated by W : Ft :=
⋂

u>t σ(Ws , s ≤ u)

F Y= G obtained as enlargement of F with G = (gt (W))t :

Gt :=
⋂
ε>0

G0
t+ε , G0

t := Ft ∨ σ({Gs , s ≤ t}).

given two measures µ, ν on C, we will study causal transport
plans between (C,F , µ) and (C,G, ν)

we will often consider µ = γ := Wiener measure on C
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Causal coupling

Notations: For a continuous process Z on a (Ω,P):

F Z := Z−1(F ) (right-continuous filtration generated by Z on Ω)
F Z ,G := Z−1(G) (enlargement of F Z with G(Z) = (gt (Z))t∈[0,T ])

Ex. Initial enlargement: gt (Z) = L ∀t ≥ 0, L random var. F Z -mbl
Ex. Progressive enlargement: gt (Z) = τ∧ t , τ random time F Z -mbl

Definition (Causal coupling)

A pair (X ,Y) of continuous processes on a probability space
(Ω,P), is called a causal coupling w.r.t. F X and F Y ,G if (X ,Y)#P is
a causal transport plan between (C,F ,X#P) and (C,G,Y#P).
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Causal coupling

Easy to see, e.g. by Brémaud-Yor (1978):

Remark ( Characterizations of causality )

For a pair (X ,Y) of continuous processes on (Ω,P), TFAE:

(X ,Y) is a causal coupling w.r.t. F X and F Y ,G ;

P(Dt | F
X
t ) = P(Dt | F

X
T ) P-a.s., for all t ∈ [0,T ], Dt ∈ F

Y ,G
t ;

F
Y ,G
t cond.indep. F X

T given F X
t w.r.t. P, for all t ∈ [0,T ];

H-hypothesis holds between F X and F X ∨ F Y ,G w.r.t. P.

(every sq.integrable F X -mart. is a sq.integrable F X ∨ F Y ,G-mart.)

Mass transport interpretation: At every time the mass
transported to the 2nd process is only based on the information on
the 1st process up to that time (+ something independent of the
whole 1st process).
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Causal coupling: Brownian case

Lemma

Let X be a Brownian motion and Y a continuous process on (Ω,P).
Then (X ,Y) is a causal coupling w.r.t. F X and F Y ,G IFF X is a
Brownian motion in F X ∨ F Y ,G .

Motivating example to study causal coupling in a filtration
enlargement framework:

Example

Let B be a Brownian motion on (Ω,P), which remains a semi-
martingale w.r.t. the enlarged filtration F B ,G , with decomposition

dBt = dB̃t + dAt .

Then, for any T > 0, (B̃ ,B) is a causal coupling w.r.t. F B̃ and
F B ,G , that is, (B̃ ,B)#P ∈ ΠF ,G(γ, γ).
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Value of additional information

Aim: use causal transport framework to give an estimate of
the value of the additional information, for some classical
stochastic optimization problems (difference of optimal value
of these problems with or without additional information).

Idea: take projection w.r.t. causal couplings of the optimizers
in the problem with the larger filtration (additional information),
so building a feasible element in the problem with the smaller
filtration and making a comparison possible.

Pflug (2009) uses this idea in discrete-time, to gauge the
dependence of multistage stochastic programming problems
w.r.t. different reference probability measures.
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Utility maximisation

B d-dimensional Brownian motion on (Ω,P).

Financial market: riskless asset ≡ 1, and m ≤ d risky assets:

dS i
t = S i

t

(
b i

t dt +
d∑

j=1
σ

ij
t dB j

t

)
, i = 1, ...,m.

|b i
t (ω) − b i

t (ω̃)| ≤ L
∑d

k=1 sups≤t |ω
k
s − ω̃

k
s |, same for σij , σ bdd

λi
t : proportion of an agent’s wealth invested in the ith stock at

time t : assume λi
t ∈ [0, 1] (no short-selling)

A(F B): set of admissible portfolios for the agent without
anticipative information (F B -progressively measurable λ)

A(F B ,G): set of admissible portfolios for the agent wit
anticipative information (F B ,G-progressively measurable λ)
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Utility maximisation

→ We want to compare the utility maximization problems:

v = sup
λ∈A(F B )

E[U(Xλ
T )], v(G) = sup

λ∈A(F B ,G)

E[U(Xλ
T )].

(Xλ
t )t : wealth process corresponding to λ, Xλ

0 = 1.

utility function U : R+ → R concave, increasing, and s.t.

F := U ◦ exp is C-Lipschitz, concave and increasing.

e.g. U(x) = xa

a , a ≤ 0; U(x) = ln(x); U(x) = − 1
a e−ax , a ≥ 1

Proposition

The following bound holds, for a specific constant K:

0 ≤ v(G) − v ≤ K inf
π∈ΠF ,G(γ,γ)

Eπ[VT (ω̄ − ω)].

(ω, ω̄): generic element in C × C, VT : total variation up to time T .
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Utility maximisation

Remark. In a complete market, for log utility, and for initial
enlargements of filtrations, the difference v(G) − v is known
explicitly (Pikovsky-Karatzas 1996).

Steps of the proof:

fix a causal transport π ∈ ΠF ,G(γ, γ)

consider v to be solved in the ω variable and v(G) in ω̄

take (ε-)optimizer λ̂ = λ̂(ω̄) for v(G)

(π,F × {∅,C})-optional projection: λ̃ ∈ A(F B)

in particular λ̃t (ω) = λ̃t (ω, ω̄) = Eπ[λ̂t |Ft ] = Eπ[λ̂t |FT ]

substitute in v
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Optimal stopping

With the same method used above, we can estimate the value
of information wrt other optimization problems, e.g.

v := inf
FW -st .t .

EP [`(W , τ)] , v(G) := inf
FW ,G-st .t .

EP [`(W , τ)] ,

where ` : C[0,T ] × R+ is F -optional, W is BM
“projecting stopping times” less obvious → randomized st.t.

Proposition

Let ` be K-Lipschitz in its first argument wrt a metric d on C × C,
uniformly in time. Then

0 ≤ v − v(G) ≤ K inf
π∈ΠF ,G(γ,γ)

Eπ[d(ω, ω̄)].

E.g. `(x, t) = f(xt ) and `(x, t) = f(sups≤t xs) satisfy the above
conditions, with d(ω, ω̃) = ‖ω − ω̃‖∞, if f is Lipschitz. In this case

0 ≤ v − v(G) ≤ K inf
π∈ΠF ,G(γ,γ)

Eπ[VT (ω̄ − ω)].



Causal optimal transport Value of additional information

Optimal stopping

With the same method used above, we can estimate the value
of information wrt other optimization problems, e.g.

v := inf
FW -st .t .

EP [`(W , τ)] , v(G) := inf
FW ,G-st .t .

EP [`(W , τ)] ,

where ` : C[0,T ] × R+ is F -optional, W is BM
“projecting stopping times” less obvious → randomized st.t.

Proposition

Let ` be K-Lipschitz in its first argument wrt a metric d on C × C,
uniformly in time. Then

0 ≤ v − v(G) ≤ K inf
π∈ΠF ,G(γ,γ)

Eπ[d(ω, ω̄)].

E.g. `(x, t) = f(xt ) and `(x, t) = f(sups≤t xs) satisfy the above
conditions, with d(ω, ω̃) = ‖ω − ω̃‖∞, if f is Lipschitz. In this case

0 ≤ v − v(G) ≤ K inf
π∈ΠF ,G(γ,γ)

Eπ[VT (ω̄ − ω)].



Causal optimal transport Value of additional information

Concluding remarks

We impose the causal constraint on transport plans → causal
optimal transport problem (classical attainability and duality
results can be shown for such problems).

With cost function = total variation, the causal optimal
transport problem can be used to estimate the value of
additional information in several optimization problems.

With the same cost function, the causal optimal transport
problem can be used to characterize the preservation of
semimartingale property in enlarged filtrations.
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