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E. Gobet - MCMC regression for nested risks

STATEMENT OF THE PROBLEM'

T.=E[f(Y,E[R|Y])|Y €A

Aim: to compute

where
v R and Y are vector-valued random variables,

v’ A is a rare subset, i.e. P(Y € A) small.

Equivalent to
E[f(X,E[R | X])]

where X has the conditional distribution of Y given {Y € A}

@ Nested expectations. Computation in two stages:
v’ one inner (cond.) expectation: ¢,(X) =E[R | X]

v one outer expectation related to a rare-event
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(Applications of computing nested expectations]

v" Dynamic programming equations for stochastic control and optimal
stopping problems, see [TR01, LS01, Egl05, LGW06, BKS10].

But coupling with rare-event is usually not required.

v' Financial and actuarial risk management |[MFE05]
» risk management of portfolios written with derivative options [Gordy,
Juneja, [GJ10]]
R: aggregated cashflows of derivatives at time T
Y : for the underlying financial variables at time T" < T".

» computation of the extreme exposure (Value at Risk, Conditional VaR) of

the portfolio.

» Essential concerns for Solvency Capital Requirement in insurance
[Devineau, Loisel [DL09]].
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1.1 Crude MC/Crude MC for E[f(X,E[R | X])]

1 Several approaches for outer/inner stages

1.1 Crude MC/Crude MC for E[f(X,E[R | X])]

v' Sample M i.i.d. of X(™) (using for instance rejection algorithms)

v For each X(™) sample N i.i.d. samples of R | X(™):
|

(m)| ~ — (m,k)

K [R | X ] ~ kg_l R :

v/ Simple, but not very efficient for both the outer and the inner stages
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1.2 Crude MC/Other spatial approximation of E |. | X]

v’ [Hong, Juneja [HJ09]| for kernel estimators
v/ |[Liu, Staum [LS10]] for kriging techniques

v |Broadie, Du, Moallemi [BDM15]| for least-squares regression methods (with
possible weighting)

Outer stage remains unsatisfactory, because Y are sampled i.i.d. and rejected

when outside A.

1.3 Ouwur approach

v use a MCMC scheme for the outer stage

v/ design a regression scheme for the inner stage, using ¢q,--- , ¢, basis

functions
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2 Efficient sampling under the conditional
probability: MCMC approach

From [G’, Liu [GL15]] and [Agarwal, De Marco, G’, Liu[ADGL15]], known as POP

scheme.

Aim: sampling of Y | Y € A.
2.1 Preliminaries

We seek a flexible approach able to overcome some constraints of importance

sampling.
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Example (Large oscillation of Ornstein-Uhlenbeck process). Let W be

a standard Brownian motion, consider the solution to

dZt = )\(,u — Zt)dt + O'th, Z() = 0.

0.8

0.6

We wish to sample on the rare event o4y

0.2f

A = { max Z; > 1.6 and min /; < —1.6}. "
0<t<T 0<t<T

=0.2¢

_0.4 [

080 0.2 04 06 08 1.0

@ Importance sampling techniques are difficult to apply on this example.
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2.2 MCMC shaker

Definition (of reversible shaking transformation).

v Define X(.) = K(., U) for some K(.) and U independent of Y.

v K(-) is a reversible shaker for Y if (Y, X(Y)) £ (X(Y),Y).

Similar to balance equation in symmetric Metropolis-Hastings sampler.

Example (SDE shaker). IfY is a standard Brownian motion,

t t
K(Y,U) = (/ psdY +/ V1 — p2dUs)o<i<T
0 0

with U is an independant BM and p € [—1,1] deterministic.

Shaking OU

Path of Z, shaked Z with p = 0.9 and p = 0.1
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K(Y) fK(Y)eA

> SHAKER WITH REJECTION: M*(Y) :=
Y i K(Y) ¢ A

Proposition (conditional invariance under shaking with rejection).
The distribution of Y conditionally on {Y € A} is invariant w.r.t. the random
transformation M*: for any bounded ¢ : S — R

E(pM*X(Y)) | Y € A) =E(o(Y) | Y € A).

v Birkhoff theorem: given an initial position Xy € A define
X ) — F (X)) om > 1,

Then, if (X(™),, is an ergodic Markov chain,

M
1
o (m)
§:1: f(X ) — E[f(Y)|Y € A].
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2.3 MCMC/Regression scheme for E[f(Y,E[R|Y])|Y € A]

1 /* Simulation of the design and the observations */
2 X ~ ¢ where ¢ is a distribution on A :

3 for m=1to M do
4 L XM ~ P(Xm=D dz) (apply the Shaker with rejection);

5 R™ ~ Q(X(™), dr);
6 /* Least-Squares regression */
| M
7 Choose G, € R solving arg min— |R(m) < ¢(X(m))>‘ and set
(XERL M _ -
O () == (Gar; 9(x)) ;
8 /* Final estimator using ergodic average */
o Return 7, := Z f(X X 4 (X (™)),

Full algorithm with M data, M > L.
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2.4 Convergence results about regression

Notations:

v’ Let p1d) be the distribution of X € R?% A=positive o-finite measure

v Let Ly(ut) be the set of measurable functions ¢ : RY — R such that
1/2
[elLa(n = (S @?ndX) "™ < +oo

V' Let ¢, = arginf cspan(ey, - ,01) |95 — ©|1,(u) be the projection of ¢, on the

basis functions.

Theorem (Non asymptotic error estimates on the regression function).

Assume that

(i) the transition kernel P and the initial distribution £ satisfy: there exists a
constant Cp and a rate sequence {p(m), m > 1} such that for any m > 1,

P — 6~ [0 0" udA| < Cr p(m).
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(ii) the conditional distribution Q satisfies

7t = sup {/TQQ(x,dr) _ (/TQ($,dT))2} < 0.

Let X(:M) and q/g M be given by the previous Algorithm. Then,

A - | L ZM (5 (X)) _ 4 (X<m>))2
21, Cp &
< Oﬁ + |ts — (b*’iz(u) - MP m§:1: p(m).

Remarks.

v’ Finite dimensional Gaussian shaker m p(m) = Cst e~“" with ¢ > 0.

v Usually Z p(m) < +oo
m=1

v' The use of MCMC design does not impact significantly the statistical error.
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Theorem (Non asymptotic error estimates on the outer expectation
E[f(VEIR|Y]) |Y € A]). Assume

(i) f:R% xR — R is globally Lipschitz in the second variable
[f (Y1) = f(y,r2)| < Cf |r1 —ra].

(ii) There exists a finite constant C' such that for any M

E <M1§:f( XM g, ( (’”” /f z, o (x)) () d ())

VAN
=0

Then
- o7\ 1/2

%Z XM S (X)) ZE[F(Y,E[R|Y])|Y €A

e[S
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E. Gobet - MCMC regression for nested risks 2.5 MCMC/crude MC scheme for E[f(Y,E[R | Y]) | Y € A]

2.5 MCMC/crude MC scheme for E[f(Y,E[R|Y])|Y € A]

1 /* Simulation of the design and the observations */
2 X ~ ¢ where € is a distribution on A :

3 for m=1to M do

4 | X ~p(X(m=D dg) ;

5 for k=1to N do

6 | RO~ QX ™), dr);

7 /* Conditional expectation by crude Monte Carlo */
8 Compute R(m) = = Z]kvzl Rm-k).

9 /* Final estimator using ergodic average */
10 Return 7, := Z f(xm) R(m)).

Full algorithm with M outer samples, and N inner samples for each outer one.
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E. Gobet - MCMC regression for nested risks 2.5 MCMC/crude MC scheme for E[f(Y,E[R | Y]) | Y € A]

Theorem (Convergence analysis). Assume that

(i) the second/fourth conditional moments of Q are bounded: for p = 2,4,

op = (Sup — /rQ(:z:,d’r')
reA

(ii) There exists a finite constant C' such that for any M

p

1/p
Q(ili,d?“)) < 0.

R <M1§:f( x (m) Lo (X (’m) /f z, ¢y (x))pu(z) d (a:)) S%.

Then,

(Cst ( if f:RY xR — R is globally Lipschitz

(]E U”j 3‘2] ) b < ! in the second variable
M — <
Cst (% + if f is continuously differentiable in the

2
_|_

o

N—

oI
N—

\ second variable, with Lipschitz derivative
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2.6 Asymptotic analysis MCMC /Regression versus MCMC /Crude MC

2.6 Asymptotic analysis MCMC /Regression versus
MCMC/Crude MC

Assume that the unknown regression function ¢, : RY — R is CP. Then

—_Dp
ErrorMCMC/Regression =0 (COSt 2p+d) )

=

O (Cost_
O (Cost_

) if f Lipschitz

ErrorMCMC/Crude MC — .
) if f smoother.

Wl

In the standard case of Lipschitz f:
v' Low dimension (p > d/2): use MCMC/Regression

v Large dimension: use MCMC/Crude MC
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3 Numerical examples

Goal: to approximate

J:=E|(E[(K-h(St)), | St] ~p.), [ ST €8

for various choices of h, where {S;,t > 0} is a d-dimensional geometric Brownian

motion, T" < T" and {St € 8} is a rare event.

3.1 A toy example in dimension 1

Here h(y) =y and 8§ = {s € Ry : s < s, } so that

J=E |(E[(K-Sm), |St] —p.), | ST <s.].

T | T | Sp

K

L | 2 | 100

100

30%

30

10

Here P(Y € A) ~ 5.6e-5
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E. Gobet - MCMC regression for nested risks 3.1 A toy example in dimension 1
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Normalized histograms of the M = 1e6 points from the Markov chain (left), from

the i.i.d. sampler with rejection (middle).
(right) Restricted to [—6, y,], the cdf of Y given {Y € A} with MCMC /crude MC

estimates.

© MCMC sampler gives very accurate sampling of the tails
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3.1 A toy example in dimension 1

[Choosing the shaking parameter is important!]

1 o= nnn—.-—..—.-—..—.'-—..—.-—.._.-—.'._.-_.._.._.—.‘
—— =0
sennn (.1
0.8 | 02
0.3
0.4
0.5

0.6 | 06 |
0.7
0.8

04t 2|
= = (.99

—_

0.2 | |

ol — o

0.2 : ' ' '

0 10 20 30 40 >0

For different values of p, estimation of the autocorrelation function (over 100

independent runs) of the chain Pgy,.

Each curve is computed using 1e6 sampled points.
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[Tune the shaking parameter according to the acceptance rateJ
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0.8 =

0.6 i

0.4 | =

0.0 e TR |
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- | I T = 1
% NN Y N _L ...... ..... EE] .......... % ..... EE%'%%%
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(top) Mean acceptance rate after M chain iterations of the chain
(green = 23.4% [Rosenthal 2008])

(bottom) Estimation of P(Y € A) by combining splitting and MCMC
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3.1 A toy example in dimension 1

90 T T T N T N T s 006
B0 L+ v oTelhgere et L d e S s 004 ¥
S em? e
° 0.02
70
60 |- :
c e 002
50 | -
-0.04
40
30 1 1 1 1 1 _0.08
-5 4.8 4.6 4.4 4.2 -4 -

0.06 b

L=2, kernel GL
| -2 kernel NR
— — — L=3, kernel GL
== = | =3 kernel NR
---------- L=4, kernel GL
----- L=4, kernel NR

-4.8

-4.6

-4.4

-4.2 -4

(left) 1000 sampled points (X (™) R("™)) (using the MCMC sampler), together

with ¢,;

(right) A realization of the error function z — ¢ (z) — é,(z) on [—5,y,], for
different values of L € {2, 3,4} and two different kernels when sampling X (::M).
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[Empirical evidence of the theoretical error bounds]

0.09

= = = MC approx, kernel GL
008 tv— 11— wereeenee MC approx, kernel NR
— fitted GL
----- fitted NR

0.07 g

0.06

) I + I I I I I I I I I
0.05 66 | + L |
0.04 | i + n
L + -
0.03 | o4 + + % + $ 1 T _
00z | 62 | £ + El é = = ,%, & &
0.01 | 60 % % Q 1 i
0 o.|5 1 1 .|5 2 2.|5 3 3.|5 4 4.|5 5 58 T . ' ' ' ' ' ' ' '
%104 rho=0 rho-0.1 rho=0.5 rho=0.85

(left) Monte Carlo approximations of M — Aj;, and fitted curves of the form
M w— o+ /M.

(right) For different values of p, and for three different values of M, boxplot of
100 independent estimates J5; when X M) is sampled from Markov chain.
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3.2 Correlated geometric Brownian motions in dim. 2

We consider

J.=F (E [(K - \/sl,T,SQ,T,))+ | ST] - p*) Sy €8

_|_

with 8 = {(s1,82) € R. X Ry : 81 < 84,82 < Sy}

. //
sg__
-

2 : Level curves of the density function
- ; , of (511,52 1) and the rare set in the

’ : lower left area delimited by the two

/ hyperplanes.

a4k ; ///

-5 L : //
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E. Gobet - MCMC regression for nested risks 3.2 Correlated geometric Brownian motions in dim. 2

For the basis functions, we take

pr(x) =1, @a(x) = Vw1,  ws(z) = o,

@4(56) = X1, 905(33) — X2, 906(56) — L1 I2.

T |T | So1 | So2| K o1 op) 0 Sk | Px

Y Y

1| 2 | 100 | 100 | 100 | 25% | 35% | 50% | 50 | 5

[Tuning the shaking parameter according acceptance rate]

0.8 | ==

0.6 |
04 ==

0.2 r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Boxplot over 100 independent runs, of the mean acceptance rate after M = le4

iterations for the Markov chain kernel. Different values of p are considered.
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6 T T T 50 ;
a5 | _
5 = -
40 | _
35 | -
4 | _
30 -
3t 1 =25} 3
20 -
2 = -
15 3
10 3
1 = -
5 - -
o) I"“-— - - o) -
-1 (e 1 2 3 -0.2 @) 0.2

(left) Normalized histograms of the error
{par (X)) — ¢, (X)), m =1,---, M}, when L = 3.
(right): the same case with L = 6.
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(left) Error function with L = 3.

(right) The same case with L = 6.
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4  Conclusion

v' Design of a regression method suitable for accurate computations in the tails
v Tail distribution is sampled using MCMC
v" MCMC /Regression > MCMC /Crude Monte Carlo for small ratio -2tension

smoothness

v" What next?

» Ongoing works (with David Barrera, Postdoc at Ecole Polytechnique, and
Gersende Fort)

» Uniform concentration of measure estimates for non stationary egordic

chains

» Rare event set A depending itself on conditional expectations (adaptive
MCMC-regression scheme)
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