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Often in mathematics it is fruitful to turn a successful point of
view around:

• affine processes gained importance since their marginal
distribution is known up to the solution of two non-linear
ODEs, the generalized Riccati equations. Often the solutions
of these ODEs are explicitly known.

• in turn one can apply affine processes to represent
stochastically (in a forward simulable manner) the solution of
non-linear ODEs, which means in particular that one obtains
(Q)MC algorithms for the solution of non-linear ODEs of
generalized Riccati type.

This point of view is classical in the theory of branching Markov
processes or super-diffusions to represent stochastically (in a
forward simulable manner) solutions of non-linear DEs. It is a
linearization by a non-linear operation of generically non-linear
equations of Lévy-Khintchine type (I shall come back to this point
of view later).
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A simple Question

If one considers affine processes as stochastic representations of
solutions of non-linear ODEs (PIDEs in case of infinite dimensional
processes), then a simple question arises:

Describe the class of equations, finite dimensional (ODEs) and
infite dimensional (PIDEs) ones, which can be represented in this
way, and estimate the complexity of simulating the representation.
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Setting

• Consider a set D ⊂ Rd+m which will serve as state space for
the affine stochastic process introduced as follows.

• We consider a diffusion process with jumps (in the sense of
Jacod/Shirayev) (N,Y ) on the state space D whose
differential semi-martingale characteristics (b, c,F ) (with
respect to the truncation function 0) are given as linear
functions in N, i.e.,

bt = βNt , β ∈ Rd+m×d ,

ct =
d∑

i=1

αiNi ,t , αi ∈ Sd+m×d+m ,

Ft(dn, dy) = 〈Nt , ν(dn, dy)〉 ,

where ν is a signed (d-dimensional) vector valued measure
such that

∫
D(‖(n, y)‖ ∧ 1)(ν+i (dn, dy) + ν−i (dn, dy)) <∞ for

all i ∈ {1, . . . , d}.
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Affine (linear) processes

• If the martingale problem corresponding to these
characteristics is well-posed, the process (N,Y ) is an affine
(actually linear) process in the classical sense. That is there
exists a function ψ : V → Cd+m such that, for every initial
value (n, y) ∈ D and for every (t, (f , h)) ∈ V, it holds that

E(n,y)[e
〈f ,Nt〉+〈h,Yt〉] = e〈ψ(t,f ,h),n〉+hy ,

where

V := {(t, ζ) ∈ [0,∞)× Cd+m : ζ ∈ Ut} ,

with

Ut :=
{
ζ ∈ Cd+m : E

[
|e〈ζ,(Ns ,Ys)〉

∣∣] < +∞ , for all s ∈ [0, t]
}
.
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The associated non-linear ODE

• The Cd -valued function ψ satisfies the following non-linear
ODE:

∂tψ(t) = R(ψ(t)) = β>(ψ(t), h)> +

 (ψ(t), h)α1(ψ(t), h)>

...
(ψ(t), h)αd(ψ(t), h)>


+

∫
D

(e〈ψ(t),n〉+〈h,y〉 − 1)ν(dn, dy).

• Its solution admits the following stochastic representation

ψi (t) = logE(ei ,0)[e
〈f ,Nt〉+〈h,Yt〉], i ∈ {1, . . . , d},

if (f , h) ∈ Ut .

• Note that if
∫
D ‖(n, y)‖ν+/−i (dn, dy) =∞, then R is not

Lipschitz.
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Polynomial ODE (1d) – u picture

• Consider the following polynomial ODE

∂tu(t) =
∞∑
k=0

aku
k(t)− u(t), u(0) = g ,

with
∑∞

k=0 |ak | <∞.

• Define ψ(t) := log(u(t)). Then

∂tψ(t) =
∞∑
k=0

aku
k−1(t)− 1 =

∞∑
k=0

ake
ψ(t)(k−1) − 1.
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Polynomial ODE (1d) in the ψ picture

• This can be associated to an affine process
(N,Y1,Y2) ∈ D = Z+ × R+ × Z+. Indeed, taking
(h1, h2) = (1, iπ), the ODE can be rewritten as

∂ψ(t) =

∫
D

(eψ(t)n+y1+iπy2 − 1)ν(dn, dy1, dy2)

with

ν(dn, dy1, dy2) =
∞∑
k=0

pkδ{k−1,log( |ak |
pk

),1{ak<0}}
(dn, dy1, dy2)

where pk = |ak |∑∞
k=0 |ak |

.
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Stochastic representation of polynomial ODEs

• The stochastic representation is given by

ψ(t) = logE(1,0,0)[e
(log g)Nt+Y1,t+iπY2,t ] .

or equivalently

u(t) = E(1,0,0)[g
NteY1,t+iπY2,t ] .

if (log g , 1, iπ) ∈ Ut . Note that the latter implies that

∂tu(t) =
∞∑
k=0

|ak |uk(t)− u(t), u(0) = g

admits also a stochastic representation given by
u(t) = E(1,0)[g

NteY1,t ].

• The process (N,Y1,Y2) is a self-exciting jump process with
intensity N. The component N jumps with probability pk by
k − 1, Y1 by log( |ak |pk

) and Y2 by 1 whenever ak is negative.
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Multivariate polynomial ODEs

• Consider the following multivariate polynomial ODE

∂tui (t) =
∞∑
|k|=0

aiku
k(t)− ui (t), ui (0) = gi , i = 1, . . . , d ,

where k = (k1, . . . , kd) denotes a multi-index and
uk = uk11 · · · u

kd
d with

∑∞
|k|=0 |aik| <∞.

• Define ψi (t) := log(ui (t)). Then

∂tψi (t) =
∞∑
|k|=0

aiku
k1
1 · · · u

ki−1
i · · · ukdd − 1

=
∞∑
|k|=0

aike
ψ1(t)k1+···ψi (t)(ki−1)+···ψd (t)kd − 1 .
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Multivariate polynomial ODE - ψ form

• To recast it into the affine form, take a process
(N,Y1,Y2) ∈ D = Zd

+ × Rd
+ × Zd

+, vectors (h1, h2) = (1, iπ1)
and rewrite the ODE as

∂ψi (t) =

∫
D

(
e〈ψ(t),n〉+y1,i+iπy2,i − 1

)
νi (dn, dy1,i , dy2,i )

where

νi (dn, dy1,i , dy2,i ) =
∞∑
|k|=0

pikδ{k−ei ,log(
|ai
k
|

pi
k

),1{ai
k
<0}}

(dn, dy1,i , dy2,i )

where pik =
|aik|∑∞
k=0 |aik|

.
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Stochastic representation of polynomial ODEs

• The stochastic representation is then

ψi (t) = logE(ei ,0,0)[e
〈log g ,Nt〉+〈1,Y1,t〉+iπ〈1,Y2,t〉] .

or equivalently

ui (t) = E(ei ,0,0)[
d∏

j=1

g
Nj ,t
j e〈1,Y1,t〉+iπ〈1,Y2,t〉] .

if (log(g), h1, h2) ∈ Ut .

• The process (N,Y1,Y2) is a self-exciting jump process with
intensity 〈Nt , ν(D)〉. The component N jumps with
probability N(i ,t)p

i
k/〈Nt , ν(D)〉 by k− ei . In this case the i th

component of Y1 jumps by log(
|aik|
pik

) and the i th component of

Y2 by 1 whenever aik is negative.
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Setting

Consider a state space M⊂ Rd and four vectors of Lévy measures
νr+, ν

re
− , ν

im
+ , ν im− corresponding to the characteristic vector fields

Rr/i
± . Only νre+ is a generic Lévy measure of finite variation, all the

others are assumed to be of finite activity. We assume the
constant part F to vanish here since it is not important for the
argument to come.

Assume furthermore that the sum over all measures

ν = νre+ + νre− + ν im+ + ν im−

satisfies the admissibility conditions and describes a self-exciting
pure jump affine (actually linear) process N taking values in M.
Then one can construct a second affine process Ñ, actually a pure
jump linear process, with state space M× Z2d and corresponding
Lévy measures ν̃ again being decomposable in four measures, too.
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Setting

ν̃ = ν̃re+ + ν̃re− + ν̃ im+ + ν̃ im−

Fix i = 1, . . . , d : coordinate i of the measure ν̃re+ corresponds to
the push forward along M3 m 7→ (m, 0, 0) ∈M× Z2d of
coordinate i of νre+ ; coordinate i of the measure ν̃re− corresponds to
the push forward along M3 m 7→ (m, ei , 0) ∈M× Z2d of
coordinate i of νre− ; coordinate i of the measure ν̃ im+ corresponds to
the push forward along M3 m 7→ (m, 0, ei ) ∈M× Z2d of
coordinate i of ν im+ ; whereas coordinate i of the measure ν̃ im−
corresponds to the push forward along
M3 m 7→ (m, ei , ei ) ∈M× Z2d of coordinate i of ν im− . All other

jump measures necessary to fully specify the affine process Ñ
vanish.
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Theorem

The non-trivial components of the ψ function of Ñ started at
(f , iπ, . . . , iπ, iπ/2, . . . , iπ/2) actually solve

∂ψt = Rre
+(ψt)−Rre

i (ψt) + iRim
+ (ψt)− iRim

− (ψt) (1)

=

∫ (
exp(〈ψt , ξ〉)− 1)η(dξ) = R(ψt) , (2)

where η = νre+ − νre− + iν im+ − iν im− is a complex measure.

In other words loosely speaking we have stochastic representations
for non-linear ODEs with vector fields being Fourier-Laplace
transforms of finite complex-valued measures on a certain state
space up to an explosion time depending on the initial value f .
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Theorem

Notice that we can also add an additive noise W to the equation

dψt = R(ψt) dt + dWt ,

which finally leads to the stochastic representation

exp
(
ψi (t, f )

)
=

= E(ei ,0)

[
exp(〈Ñt , (f , iπ, iπ/2)〉) exp(

∫ t

0
〈Ns , d Ws〉)|σ(W )t

]
up to an explosion time depending on f and the trajectory of W .
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Some comments on simulation

In contrast to classical algorithms for ODEs the stochastic
representation allows for parallelization. There are several
competing techniques to simulate affine processes with different
complexities depending on the situation:

• Euler scheme on determinstic grid.

• Euler schemes on stochastic grids.

• Random time change techniques.

• Branching Markov process techniques.

Random time change techniques and Branching techniques can be
particularly interesting due to low complexity in many important
situations, in our example we just applied the unbiased Euler
scheme on a stochastic grid in dimension 106 (sic!) with ith vector
field coordinate depending on {i − 1, i , i + 1} for 2 ≤ i ≤ 106 − 1.
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Motivation from PHL (2012)

Non-linear PIDEs of the form(
∂t + L

)
u(x , t) + F (u(t, x))− u(t, x) = 0

with boundary condition u(x ,T ) = g(x) allow for branching
Markov process representations for certain types of non-linearities
F .

Generically it holds true that

u(t, x) = E(x ,t)

[
exp(−(T − t))g(XT )

]
+

+

∫ T

t
E(x ,t)

[
exp(−(s − t))F (u(s,Xs))

]
ds

by the previous representation property. However, this is not a
stochastic representation but rather a fixed point equation.
Inserting the equation into itself leads towards a backwards
algorithm or – under certain assumptions on F – towards a
branching tree representation.
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Motivation from PHL (2012)

Assume that F is of the form

F (u) =
M∑
k=0

pku
k

with pk ≥ 0 and
∑

pk = 1, then the previous fixed point equation

u(t, x) = E(x ,t)

[
exp(−(T − t))g(XT )

]
+

+

∫ T

t
E(x ,t)

[
exp(−(s − t))

M∑
k=0

pk(u(s,Xs))k
]
ds

leads to the short time asymptotics
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Motivation from PHL (2012)

u(t, x) = exp(−(T − t))E(x ,t)

[
g(XT )

]
+

+
M∑
k=0

pk

∫ T

t
exp(−(s − t))E(x ,t)

[
E(Xs ,s)[

k∏
j=1

g(X
(j)
T )]

]
ds+

+ o
(
(T − t)

)
,

where X (j) denote independent copies of the Markov process X .
We can now concatenate the short time asymptotics, since the
expansion does not depend on u anymore.
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Motivation from PHL (2012)

This leads to a branching Markov process representation, i.e. a
Markov process whose state space at time t is an integer number k
of individuals in state (x1, . . . , xk) ∈ Dk . The particles move
independently subject to the Markov process X and they die at an
exponential time with parameter 1 each after giving birth to a l
individuals with probability pl (which is called branching).

The number of particles in a measurable subset A ⊂ D is an
integer-measure-valued, self-exciting affine process. Let us denote
the overall number of particles at time T by NT .
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Forward stochastic representation for semi-linear PIDEs

A similar consideration as before leads to the following stochastic
representation formula

u(x , t) = E(x ,t)

[ NT∏
j=1

g(X
(j)
T )×

M∏
k=0

(ak
pk

)#{branchings of type k}]
.

for equations with generic non-linearity

F (u) =
M∑
k=0

aku
k − u

and auxiliary branching mechanism p0, . . . , pM > 0,
∑

pk = 1
governing the underlying branching process.
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Forward stochastic representation for semi-linear PIDEs

This is a stochastic representation by a Markov process, infinite
dimensional though, which can be simulated forward such as in the
linear case. The result has been brought to mathematical Finance
by Pierre Henry-Labordere and extended by
Henry-Labordere-Tan-Touzi, but roots in works of Dynkin,
McKean, LeJan, Sznithman, etc.
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Conclusions

• We can find forward stochastic representations for non-linear
vector fields being of L-K-form on cones with respect to
complex-valued measures even beyond local Lipschitz
properties (which relates the result to
Lions-DaPerna-Ambrosio theory).

• Similar representations also hold with additive noise.

• The results extend to semi-linear PIDEs when the underlying
Markov process’ state space (acting on types) is not finite
anymore.

• The complexity of the method depends on the sparsity of the
involved jump measures.
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