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Figure: ("Pseudo-CEV model") dX; = rX;dt + 9(X. /(1 4 X?)*/*)dW,
Xo =100, r =0.15, 9 = 0.7, T = 0.5. Optimal grids, X;, = xi, tx = kA,
A =002 k=1,...,25,i=1,..., N¢ vs the associated weights.
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Motivations

We want to compute E(f(X7)) (or E(f(Xt,,,)|Xt,)) where X is a
solution to the SDE

t t
Xt :x+/ b(s,Xs)ds+/ o(s, Xs)dWs
0 0
where W is a standard g-dimensional BM, ind. from X,
b:[0,T] x RY = R, o :[0, T] x R — RY*9 are Borel

measurable functions and satisfy appropriate conditions. The
quantities of interest have in general no explicit solution.

Then, Ef(X7) e.g. have to be approximated, for example, by
E[f(XT)] (1)
where ()_Qk)k:o,m,,, is a discretization scheme of the process
(Xt)t>0 on [0, T], for a given discretization mesh t, = kA,
=0,....,n, A=T/nm
)_<tk+1 = th + b(tkv)_(tk)A + U(tk7)_<tk)(Wtk+1 - Wtk)’ )_<0 = Xo
= gk(thv Zk+1)7 Zk+1 ~ N(07 /d)'
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At this stage, the quantity (1) still has no closed formula in the
general setting so that we have to make a spacial approximation of
the expectation or the conditional expectation.

e This may be done by Monte Carlo simulation techniques or by
optimal quantization method (Using for example stochastic
algorithms or the recursive quantization (see Pages and
Sagna)).

e The aim of this work is to present another approach to
quantize the Euler scheme of an R%valued diffusion process
in order to speak of fast only quantization in dimension
greater than one.

e We propose a Markovian and product quantization method. It
allows us to compute very quickly (in seconds order) the
optimal product quantizers and its companion weights and
transition probabilities when the size of the quantizations are
chosen reasonably.
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Optimal vector quantization

> Let (©2,.A,P) be a probability space and X : (2, 4, P) — R?
be a r.v. with distribution Px. Assume that X € L"(IP)

> The L"-optimal quantization problem at level N for X consists
in finding the best approximation of X by a Borel function 7(X) of
X taking at most N values.

> We associate to every Borel function 7(X) taking at most N
values, the L"-mean error (E|X — m(X)|")'/", where | - | denotes an
arbitrary norm on RY.

> Then finding the best approximation of X by a Borel function of
X taking at most N values turns out to solve :

en. (X) = inf {|IX —7(X)|;,7:R? = T,T c R || < N},
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Optimal vector quantization

> Let T = {x1, -+ ,xy} C R? be a an N-quantizer (or a grid of
size N) and define a Voronoi partition (G;(I"))i=1,... y of R?: Vi,

. d. 1y ol o .
G(N) c {xeR: |x — x| j:T~I~n,N’X xj| }.

> Consider the quantization of X by the N-quantizer I, defined by

N
X' =3 " xilixec(ry = Projr(X). (2)
i=1
> Then, ey (X) reads (||Y|, = (E|Y|")}" for every Y € L"(P))
e, (X) = inf {| X — X"[,,[ c R%,|[| < N} (3)

> For every N > 1, the infimum in (3) is attained at one
N-quantizer (an L"-optimal N-quantizer) at least. When
|supp(Px))| > N, any L -optimal N-quantizer has size N (see
Graf-Luschgy/Pages). The quantization error, ey ,(X), decreases to
zero as N goes to infinity: Zador Theorem.
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Zador theorem

Theorem
(a) (Zador/Graf-Luschgy). Let X be an R¥-valued r.v. s.t.
E|X|™ < 400, 1 >0 and let Px = f - \gy + Ps. Then

NL‘TOO N ey A(X)= Q- (Px) (4)

141
with Q,(Px) = (de fais d)\d> T infast No e, (U([0, 1)),

(b) (Pierce/Gralus-LusPag). Let n > 0. There exists an universal
constant Ky 4, s.t. for every rv. X : (2, A,P) — R9,

Q=

nfIX = X, < Koy o2 (XON 4, 5)

where
02777(X) = (ienléd HX - C”2+n < +o0.
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Distortion function

Define the distortion function for every I' = (x, ..., xy) by

N
DN’Q(r) = ]E‘X - Xr’2 = Z/C( ) ’X - X,"2C/IP))((X), (6)
i=1 7 G0

so that e,2\,’2(X) = infre oy Dy 2(T).
Proposition

Dy > is differentiable at any N-tuple I € (RN having pairwise
distinct components and such that P (X € U;0C;i(I")) = 0, and,

VD (M) =2 /C CE )dBx(x) (7)

i=1,,N

For numerics, the search of optimal (or stationary) quantizers is
based on zero search recursive procedures like Newton-Raphson
algorithm for real valued r.v. and other algorithms when d > 2.
Optimal NV(0; Iy) grids available at www.quantize.math-fi.com.
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Error Analysis
Error approximation of Ef(X) by Ef(X"): (see Pagés-Printems).
(a) Let I be a stationary quantizer and f be a Borel function on
RY. If f is a convex function then
Ef(X") < Ef(X).
(b) Lipschitz functions:
o If f is Lipschitz continuous then for any N-quantizer [ we have
[EF(X) = EA(XD)] < [Aluip X = X",

e Let #:RY — R, be a nonnegative convex function such that
0(X) € L2(P). If f is locally Lipschitz with at most f-growth,

ie. [f(x) = f(y)| < [fluip|x — y[(6(x) + 6(y)) then
f(X) € LY(P) and

[EF(X) — Ef(X")| < 2[fluipllX — X"ILIO(X)]L,-

(c) Differentiable functionals: if f is differentiable on R with an
a-Holder gradient V£ (a € [0,1]), then for any stationary T,

[EF(X) = BF(XT)] < [Vla] X = XT|[FFe
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The recursive quantization of the Euler scheme (Pages and Sagna)

In practice, the recursive quantization of the Euler scheme (X,)
consists to compute a sequence (I'x) of quantizers defined by

M€ argmin{Dx(T),T c RY, card(l) < Ny}
where Dy (+) is the distortion associated to X;, and defined by
Di(Tx) = Edist(Xy,, T¢)” = E[dist(Ex—1(Xe 1+ Zk): Tk)?]. (8)

> Recursive (marginal) quantization method. We quantize Xy by
Xoro. To define the recursive quantization of X; we replace Xp by
XOro in (8), then, we set X := EO(XOFO,Zl) and consider the
induced distortion

D1 () := E[dist(Xy, 2] = E[dist(Eo(Xg°, Z1), T)?],

where I € RY and card(I) < M.
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The recursive quantization of the Euler scheme (Pages and Sagna)

~ The distortion function Dy(-) is the one to be optimized in
order to produce the optimal Ni-quantizer I'1.

~+ Consequently, we define the recursive margmal quantization of
Xy, as the optimal quantization of th th = PrOJrl(th) where

1€ argmin{Dy(T), T C RY, card(l') < Ny}.

~+ Once the optimal Nj-quantizer ' is produced, we define the
recursive quantization of X;, as the OQ Xtr; of Xi, where

M€ argmin{Dy(T), T C RY, card(l) < Ny}
Dy(T) = E[dist(Xy,, 1)?]  and Xy, := E1(X[2, Zo).

~ Repeating this procedure, we define the recursive quantization
of (th)o<k<,, as the optimal quantizations (Xtrkk)ogkg,, of the

process (th)0<k<n vV keA{0,...,n}, )A(trkk = Projrk()?tk), with
Xo = Xo.
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The recursive quantization of the Euler scheme (Pages and Sagna)

~ This leads us to consider the sequence of recursive marginal
quantizations (Xtrkk)kzo,m,/\, of (X¢, )k=o0,... n. defined from the
following recursion:

Xo = X

or Y. v or

Xi k= Projr (X)) and Xy, = E(Xe), Zky1), k=0,...,n—1
where (Zi)k=1,..n is an i.i.d. sequence of N(0; Iy)-distributed
random vectors, independent of Xj.

> From an analytlcal point of view, we show in particular that for
any sequence (X “Jo<k<n of (quadratic) optimal recursive

quantization of (X, Jo<k<n, the quantization error || X, — Xtrkk||2,
at the step k of the recursion is given for any 1€]0, 1] by

k
o or —~1/d
1K= Xikll, < D a; e,
¢=0
where a, is a positive real constant depending on b, o, A, xp, 1
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Markovian product quantization: description of the method
~ Denote by I‘i an Nf—quantizer of the /-th component )_(;f of the

vector )_(k and let Xf be the quantization of )_(,f of size N, on the
grid Fi.

~ Define the product quantizer I, = ®9_, [ (of the vector Xj)
of size Ny = Nix ... xN¢ as

Mo ={(™,ox0™), e {1,..., N}, €e{1,...,d}}.

~ Set, for every k € {0,...,n},

I ={(i-vig), i € {1,...,N}} (9)
and for / := (i1,...,ig) € g, set
X = (X;’il, . ,x;j""’). (10)

~ To define the Markovian product quantization, suppose that X
has already been quantized and that we have access to the
companions probabilities P(Xy = x ), i € F.
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Markovian product quantization: description of the method

~ Setting XkJrl = Sk(Xk, Zk+1). We may approximate the
distortion function D,(Jr:l associated to the /-th component of the

vector XkJrl by

5l€+1(ri+1) = E[dist()?f+1,ri+l)2]

= E[dist(Ef(Xe, Zir1)s Thpr)?]
= Z E[dlst(gﬁ(XL, Zk+1), Fk+1)2}]P’()A(k = XII()
€Iy

This allows us to consider the sequence of product recursive

quantizations ()A(k)k:07...,n of ()?k)kzo,...,,,, defined from the

following recursion for every k =0, ...

Xo=Xo, X!= PrOJre(Xk) (=1,.

,n—1:

,d
d

X = (XL,...,X?) and xk+1_5 (Xk,ZkH) (=1,...,
EZ(X Z)_mk( )+\/7( (tk-,X)|Z)> mi( )_X +Abe(tkvx)
z=(z',...,29) € R9, x = (x},...,x9), b= (b,...,b%)



00000000 0O0@00000000 00000000

Motivations Short overview on the optimal quantization Markovian product quantization Apphc ation

Markov property
Remark. The process (Xk)k>0 is a Markov chain on RY.

In fact, setting ]-"5 = a()A(o, . ,)A(k), we have for any bounded
function f: RY = R

E(f(Xk+1)|Fli<) - (f {Xk+1 k+1}‘fk>
JGfk+1
B ~ X
- Z f( Xf@rl ( {E(Xi,Zk1)elTi= Gy (ThL ) }|}—k>
J€Ikn1
where gk()?k7 Zii1) = (5,}(2,(, Zki1),- - 5d()?k, Zi41))- So that
E(f(Xes1)|FX) = > fOdy)h(Xe),
JE€Ik1

where for every x € R,

d
hi(x) = P(Ek(x, Zks1) € [ ] Gi(Thrn))-
/=1
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The companion weights and transition probabilities

Let us set, for every k € {0,...,n— 1} and for every j € Fy 1,

£je—1 é,j £je+1
Cje=1/2 _ k+1 + X cier2 X X
Xk+1 5 ) Xkr1 T 5
¥x € R%: 04 (x)2 = X0 A(0P(x))* = Alofe(x)|? and

if Z,Ez:q) =z e Rt and x € RY, we set (if of1(x) > 0)
xe=1/2 _ mi(x) — \/E(Jff’zq)(xﬂz)

0 _
Xy (xz) = — VAo (x)
k
Cjp+1/2 0,2:

bt oy e 2 = mi(x) = VA(e ) (x)2)
and  x.7"(x,z) = VAo () :

K

We also set

_ 0,2: Lje—1/2 Ljet+1/2
kae( x) = {z eRI, \/Z(JIE q)(X)|z) € (kal Y _mi(x)»xkflﬂ/ —mf(x))

and
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The companion weights and transition probabilities

={te{l,....d}, ol(x)=0}
Jk ={te {1 ,d}, oft(x) <0}
Jj(x ={te {1,..., d}, ot(x)>0}.

Proposition. Let {)A(k, k=0,...,n} be the sequence of Markovian
product quantization. Then, (Xk+1 k+1|Xk = xk) equals

IE H I{CEJ } max (cDO(BJ(Xk? C)) - (bO(aj(Xliv C))?O)

Le19(x))
where ¢ ~ N(0; Ig—1) and where for every x € RY and z € R9 L,

l l
aj(x,z) = max ( sup kal (x,z), sup xk’_ffr(x z))
eeJ; (x) el (x)

and Sj(x,z) = min (éejﬂrlf( )xﬁf’fi(x,z),ée;}rlf( )xﬁf{(x,z)),
KX kX
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Weights and transition probabilities of )A(,f

~~ In the particular case where the volatility matrix o(t, x) of
(Xe)t>o0 is a diagonal matrix with positive diagonal terms

H Xﬁ’ffr kao)) ¢0(Xk+1 (Xk’o))]
=1

Proposition. 1. Forany ¢ € {1,...,d} and any j; € {1,..., Nﬁ+1},

P(XkJrl € Cje(rkJrl)P?k :X/i) = ‘DO(Xﬁffr(Xk,O)) q’O(Xk L (ks ))

Remark. We remark that
~~ This allows us to compute the weights I[”( 1 € G (T k+1))'
~ For 0,0 € {1,...,d}, e {1,....Nf 1}, jo € {1,....N{ },

’\’Je

de el _ é % i
(Xk+1 - ije |X - ’Jel Z 5{]@/7%/ (Xk = X;<)
€Iy
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Computing the Markovian product quantizers
Recall that for every £ =1,...,d, forevery k=0,...,n—1,

5l€+1(r£+1) = Z E[d(gﬁ(X/;, Zk+1), r£+1)2]]P’()A<k = XL)
€Iy

Dk+1(rk+1) is continuously differentiable as a function of the

Ny 1-quantizer rk+1 (having pairwise distinct components) and its
gradient vector components read

aD! o ~
Wialien) _ S~y () pf —50,(%). (@)
anJZ €Iy

where for every x € RY,
L L, 2
V() = (s — mi() (@06 () — Bo(xdy ()

+ 940 (P (x5 () = @ (5l () )-
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The sub-diagonal, the super-diagonals and the diagonal terms of
the Hessian matrix are given respectively by

D 1(Th) o )
#,lel = Z Wi 1 (k) pr = BV 1 (X,

Jee—1
8xk 8xk 7.
0 Dk+1 k+1
oo lie g bietl =E (Xe)
B £,je+1 Z J(’z/(""l _jg,Jg—‘,—l k)s
Ox 110Xl i€
a2Dk 1( k1) ;
and  —— S = 3V () Pl = BV (X0,
Xk+1 i€y
where for every x € RY,
1 1 -
" — Zv./ Z,J 1 / Z,_[ —
Gege—1(x) = _ZW(XHG — x4 )90 (x 2 (%)),
1 1 Cj+1 4 Lo+
Vi e (x) = Tayl (%) (%1 — Xk’fl)q’/ (inq (%))

¢ ¢
WY, (x) = o (X257 (%)) = Po(x 2y (x)) + W) 1 (x) +

2
WJZ Jet
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Newton and Lloyd algorithms
~ Once we have access to VDfJr1 and V2D£+1 we may write
down a Newton-Raphson zero search procedure to compute I_f;H.

It is indexed by p > 0, where a current grid Fk+1 is updated as:

0,p+1
rkff rk+1 (szk+1(rk+1)) VDk+l(rk+1) p=>1,

starting from a rk+1 € RNin (with increasing components).
~ T = {Xk’fl,jg 1,...,Nf, 1} is an optimal Markovian
product quantizer for Xk+1 then it is a stationary quantizer for

)N(,fﬂ, means, E()N(fH!)A(erl) Xk+1 Then

v S [MEODer() — 000, ()] Pl
X+l = N\ i (12)
Zie,ﬁk Yek (X)) Pl

where for every x € R,

7ea()=00 (3577 (x)) =0 (347 (%)), 77, 0)=0h (x 287 (x)) =95 (37 (x)).
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Error Analysis
Suppose that

|b(t, x) — b(t, y)| < [blLip|x — y| (13)
lo(t,x) = o(t, y)Il < lo]Liplx — y| (14)
|b(t,x)| < L(1 + |x]) and [[o(t, x)|| < L(1 + [x]). (15)

Theorem. Let the coefficients b, o satisfy the assumptions (13),
(14) and (15). Let for every k = 0,--- ,n, ', be a quadratic MP
quantizer for Xy at level Ng. Then, Yk =0,--- ,n, V1 €]0,1],

d

K
_ . . 1/2
r - _
1K = Kkl < Koy D eF08Cra(cy. ) (D (M) )
=1 i=1
where for every p € (2, 3],
1

ag(-)::ecbﬂa(tkipté) |:e(*ip+Kp)t£ |x0|P+d(k_1)(§_1) EN:PAJrL;pr (e("P‘*'KP)tZ—l)} P7
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with Cp s = [blLip + 5[0]2;,, K2,y is a universal constant defined in
the Pierce's Lemma;

Kpi= <7(P“)2(P*2) +2pL) and  Kp:=2P1LP <1+p+ ele1) A5‘1> E|Z|P.

Notice that if we take the same grid size N = N, for every
i€{l,...,d}, the error bound (26) becomes

k
H)_(k - XkrkH2 S K2,77 \/g ZaZ(b7 g, tk7A7X07 L72 +77)N€_1/d
/=0
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BSDE
~» Consider the following Markovian BSDE

T T
yt_g+/ (s, Xe, YS,ZS)ds—/ Z.-dW,, telo,T], (16)
t t

where W is a g-dimensional BM, Z € R9 is a square integrable
progressively measurable process, f : [0, T|xRY xRxR9 — R.
We suppose £ = h(XT), where X is a strong solution to the SDE

t t
Xe =x+ / b(s, Xs)ds —|—/ o(s, Xs)dWs, xe R, (17)
0 0

~» The discrete time quantized BSDE process (\A/k)kzo,... n

)

Y, = h(X,)
Yi = Ex(Yis1) + Dnfi(Xi, Ex(Yir1), Ck)
- 1 ~  ~
with <k = EEk(Yk+1AWtk+1)7k :Ov y N — 13
n

where B = E(- |)A<k)
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~ Explicit numerical scheme for the BSDE. For i € ., j € Fy41,

p;:(.:]P’()?k:X,';) k=0,
and pi =P(Xky1 = 1\Xk—xk) k=0,---,n—1

Setting Yi = yk(Xx), for every k € {0,--- , n}, the quantized
BSDE scheme reads as
{ Yn(x}) = h(x}) xi €Th

~

V(i) = Qi) + Bnf (e xi0 G(x4), B(xk))  xe € T
where for k=0,...,n—1,

k() = Y Tira(xlyy) P Brlx F > Vil
J€EIks1 J€EIks1
with )
/\Z - E(Zk+1]l{>?k+1

k+1
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Proposition. Suppose g = d, Ef(x, Ziy1) = Sf(x, ZfH). Then
N = (s ) =@ () T [0 (™ ()~ (e 00) -
In the general setting set

be—=1/2 Jp+1/2
B2 = {zeR VAP()ze (xS P mmi ()5 5 - mi() }

and

L%p(x):{ée{l’""d}’ 2 #p (Uipl (X)) 210}‘

We also set
N TPl ) VEAP 0 eppr, et P omb0- Ve Pz
(x,2)= w \2\12 X1 (x2)= o N2\ 12
A(Zp’#p (”k (X)) ) ‘/Z(Ep’#p ("k (X)) )

Proposition. The p-th component /\Z’p of /\Z reads

N =EC T Mg g (o070 ) = o570 )

CeLYP(x})
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with the convention that [],.4(-) =1, { ~ N(0;1) and where for
every x € RY and z € R,

i . £.p.
af(x,z) = sup ka’_ffe (x,2), B (x,2) = |0nf cxkfi’ﬁ(x, z).
e (L7 (x)) te(L)P()

In particular, if p € {1,...,q} and if for every £ € {1,...,d} there
exists p' # p such that o' (x) # 0, then,

NP = E¢(Po(aP(xf, Q) — Po(82(x, )T (18)
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~> Call price. Call option with maturity T, strike K on a stock
price X:
dXt = /JXtdt + O'Xtth.

Considering a self financing portfolio Y; with ¢; assets and bonds
with risk free return r. We know that the portfolio evolves
according to the following dynamics:

T T
Y, = YT+/ f(Ys,Zs)ds—/ Z.dW, (19)
t t

where the payoff Y7 = (X7 — K)™T, the hedging strategy
Zy = oo Xy and f(y,z) = —ry — =220 It is clear that the

[

function f is linear with respect to y and z and, it is Lipschitz
continuous with [f]Li, = max(r, £="). We perform the numerical

tests from the algorithm we propose with the following parameters
Xo=100, r=01, =02 K=100, T =05

and make varying the volatility o.
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g YO (n:20) Yg (n:40) Y() Z() (n:20) ZO (n:40) ZO
0.05 04.97 05.01 05.00 04.67 04.58 04.62
0.07 05.23 05.26 05.27 06.04 05.95 05.95
0.10 05.81 05.84 05.85 07.83 07.72 07.71
0.30 10.88 10.89 10.91 19.00 18.91 19.01
0.40 13.56 13.56 13.58 24.91 24.82 24.99
0.50 16.26 16.25 16.26 31.07 30.98 31.24

Table: Call price in BS model: N, =100, Vk =1,...,n; n € {20,40}.
Computational time: < 1 second for n = 20 and around 1 second for

n = 40.
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~» Multidimensional example. We consider the following example
due to J.-F. Chassagneux:

dXt == th, —dYt = f(t, Yt,Zt)dt - Zt . th

where f(t,y,z) =(z1+... + zq)(y — %) and where W is a
d-dimensional Brownian motion. The solution of this BSDE reads
€t

i Zi=—t (20)

Y, =
T 14 (1+ )2’

with
er = exp(xy + ...+ xq + t).

For the numerical experiments, we put the (regular) time
discretization mesh to n = 10. We choose t = 0.5, d = 2, so that
Yo = 0.5 and Z; = 0.24.

Test for d = 2. Using the Markovian product quantization method
with Ny = No = 30 we get : Yo = 0.504, Z3 = Z3 = 0.2385. The
computation time is around 4 seconds.
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Problems from quantitative finance

1. Several references: [Pagés, (1998)], [Callegaro, Fiorin,
Grasselli (2015)], Quantitative Finance: optimal stopping
(Bally-Pages, (2003)/Bally-Pagegs-Printems, (2005)), pricing of
swing options (Bardou-Bouthemy-Pages, (2009)), stochastic
control (see e.g. Corsi-Pham-Runggaldier (2009)
/Pagés-Pham-Printems, (2004)), nonlinear filtering (e.g.
Pagés-Pham, (2005) /Pham-Runggal- dier-Sellami, (2005)/etc,
variance reduction (Lejay-Reutenauer/Frikha-Sagna., (2012))/
BSDE llland, Delarue-Menozzi, Chassagneux-Richou, etc,
Functional quantization: (Pages-Printems)
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