Approximation of Markov semigroup

Advances in Financial Mathematics

Vlad Bally and Clément Rey

LAMA - Université Paris-Est Marne-la-Vallé

LPMA - Jussieu Paris 6

clement.rey@upmc.fr

Presentation of the problem - Regular case

► Underlying semigroup : (X_t)_{t≥0} Markov process in ℝ^d.

Let T > 0, $n \in \mathbb{N}^*$. Time grid : $t_k = k \frac{T}{n}$. $(Z_k)_{k \in \{1, \cdot, n\}}$ sequence of centered and independent random variables in \mathbb{R}^N , and $\psi_k \in C_h^{\infty}(\mathbb{R}^d \times \mathbb{R}^N \times \mathbb{R}_+)$.

Approximation semigroup : $(\overline{X}_{t_k}^n)_{k \in \{0,\cdot,n\}}$ Markov chain : $\overline{X}_{t_{k+1}}^n = \psi_k(\overline{X}_{t_k}^n, \frac{Z_{k+1}}{\sqrt{n}}, T/n).$

▶ Weak error, order *h* for a class of test functions *f* :

 $|\mathbb{E}[f(X_T) - f(\overline{X}_{t_n}^n)]| \leq C(f)/n^h.$

Convergence for the total variation distance : $C(f) = C ||f||_{\infty}$, for every measurable and bounded function *f*.

Hypothesis

▶ Short time approximation : $\Delta_k^n f(x) = \mathbb{E}[f(X_{t_{k+1}}) - f(\overline{X}_{t_{k+1}}^n)|X_{t_k} = \overline{X}_{t_k}^n = x].$

 $\|\Delta_k^n f\|_{\infty} \leq C \|f\|_{q,\infty} / n^{h+1}$

Doeblin : The law of every Z_k is lower bounded by the Lebesgue measure.

Then, $Z_k = \chi_k U_k + (1 - \chi_k) V_k$, χ_k Bernoulli random variable. Integration by parts formula for functionals of $U_1, ..., U_n$.

Scheme function ψ_k . **Regularity** + **Ellipticity**

Total variation convergence and density approximation - Regular case

Theorem

• \overline{X}^n converges to X for the total variation distance with order h.

$$|\mathbb{E}[f(X_T) - f(\overline{X}_{t_n}^n)]| \leq C ||f||_{\infty} / n^h$$

• Moreover, $\forall t > 0$, $X_t(x)$ has a density $p_t(x, y) \in C^{\infty}(\mathbb{R}^d \times \mathbb{R}^d)$ and $\forall R > 0$, $\varepsilon \in (0, 1)$

$$\sup_{2S < t_k \leqslant T} \sup_{|x|+|y| \leqslant R} \left| \partial_x^{\alpha} \partial_y^{\beta} p_{t_k}(x, y) - \partial_x^{\alpha} \partial_y^{\beta} \overline{p}_{t_k}^n(x, y) \right| \leqslant C_{\varepsilon} / n^{h(1-\varepsilon)}$$

Proof: Finite dimensional Malliavin calculus with respect to U_k , $k \in \{1, ..., n\}$. Interpolation inequality for the density approximation. (Bally Caramelino)

Example - Euler

► Euler scheme,
$$t_k = \frac{kT}{n}$$
.
 $dX_t = b(X_t)dt + \sigma(X_t)dW_t$
 $X_{t_{k+1}}^n = X_k^n + b(X_{t_k}^n)(t_{k+1} - t_k) + \sigma(X_{t_k}^n)\sqrt{t_{k+1} - t_k}Z_{k+1}$

•
$$\psi(x, z, t) = x + b(x)t + \sigma(x)z$$
, $b, \sigma \in C_b^{\infty}(\mathbb{R})$, $\inf_{x \in \mathbb{R}} \sigma(x) \ge \lambda_* > 0$.

Then,

$$|\mathbb{E}[f(X_T) - f(X_T^n)]| \leq \frac{C}{n} ||f||_{\infty}$$

Proof Gaussian case : Bally Talay

Total variation convergence - Locally regular case

Theorem

We suppose that there exists $\mathbf{K} \subset \mathbb{R}^d$ such that : $\psi_k \in C_b^{\infty}(\mathbf{K} \times \mathbb{R}^N \times \mathbb{R}_+)$, $k \in \{1, ..., n\}$, then, for every $\tilde{\mathbf{K}} \subset \mathbf{K}$ (strictly) :

• $\overline{X}_T^n \mathbf{1}_{\tilde{\mathbf{K}}}$ converges to $X_T \mathbf{1}_{\tilde{\mathbf{K}}}$ for the total variation distance.

$$|\mathbb{E}[f(X_T \mathbf{1}_{\tilde{\mathbf{K}}}) - f(\overline{X}_{t_n}^n \mathbf{1}_{\tilde{\mathbf{K}}})]| \leq C ||f||_{\infty} \varepsilon_{\infty}(n) / n^h$$

with $\lim_{n\to\infty} \varepsilon_{\infty}(n) = \infty$.

 $\ensuremath{\textit{Proof}}$: Localization of the processes on $\ensuremath{\textbf{K}}$ + Concentration inequalities (Berstein, Hoeffding).

Application : Cubature scheme CIR (Alfonsi).

Conclusion

▶ Weak error for regular and locally regular Brownian diffusion processes.

- Perspectives :
 - Levy processes.
 - Piecewise deterministic Markov processes.
 - General processes with jump (e.g : Processes with censored jumps).

Thank you.