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Presentation of the problem

Denote (S,)o<u<t an underlying and P(S) the payoff of a derivative on S.
The price of a derivative is generally calculated as the expectation
E(P(S)) under a certain risk-neutral measure P.

We write S, = Spe*Xv, where we model X as an affine stochastic volatility
model [Keller-Ressel, 2011].
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Introduction

Definition and properties of the model

Definition: An affine stochastic volatility model (Xs, Vs)s<¢, is a

stochastically continuous, time-homogeneous Markov process such that
(eXS)s<t is a martingale and

E (euX5+WV5

Xo=x,Vo = v) — e?(s,u,W)+(s,u,w) vtux

)

for all (s, u, w) € Ry x C2.

One of the main properties of affine stochastic volatility models is that the
functions ¢ and 1) satisfy generalized Riccati equations

Orp(t,u,w) = F(u,y(t,u,w)), ¢0,u,w)=0
Oep(t, u,w) = R(u,¥(t,u,w)), (0, u,w) =w.
where F and R have Lévy-Khintchine form.
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Introduction

Definition and properties of the model

Theorem Under appropriate hypotheses,

@ There exists an interval | D [0, 1], such that for each u € /, the
Generalized Riccati equations admit a unique stable equilibrium w(u)
and at most one other equilibrium Ww(u), which is unstable.

@ For u € R\/, the Generalized Riccati equations do not have any
equilibrium.

We denote B(u) the basin of attraction of the stable solution w(u).
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Definition and properties of the model

Denoting J ={u el : F(u,w(u)) < co}. We have that
e Jis an interval such that [0,1] C J C /.
e Foruel, we B(u) and At > 0, we have

¥ <A€t " W> s w(u).

e—0

e For ue J, we B(u) and At >0,

A
eqb(t, u, W) — At h(u) ,
€ e—0

where h(u) = F(u, w(u)).
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A result of large deviations

Theorem Under some (strong but verifiable) hypotheses on the function
h, (Xs)o<s<t = (€Xs/c)o<s<t satisfies a LDP, as e tends to 0, on
{x:[0,t] = R : xo = 0} equipped with the topology of point-convergence
with good rate function

* ! e ’ dvs
N(x)= [ h"(xF)ds+ | H dbs ,
0 0 d95
where

h*(y) = limsup {Ay — h(\)} ,
e—=0 ) ¢y

H(y) = lmeh*(y/e) =y (]l{y>0} sup{u € J} + 1y .y inf{u € J}) ,

C

x* is the derivative of the absolutely continuous part of x, vs is the
singular component of dxs with respect to ds and 6 is any non-negative,
finite, regular, R-valued Borel measure, with respect to which vs is
absolutely continuous.
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A result of large deviations

Idea of the proof

@ Provethatfor0< 1 < ...<t, <t (X,_Fl,...,an) satisfies a LDP.

o Use iteratively the tower property and the expression of the Laplace
transform of (X;, V;) to obtain the exact expression for
E | X MXg/e |

e Use the behaviour of the solutions ¢ and i of the Generalized Riccati
equations when time tends to infinity to calculate
lime_q € log (JE {ezfﬂ Ay
o Use the Gartner-Ellis Theorem.
@ Use the Dawson-Gartner theorem to extend the LDP to the whole
trajectory of (X¢)s<¢.
© Use a convex analysis result by [Rockafellar, 1971] to obtain the form
of the rate function.
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Monte-Carlo estimation and optimal measure change

Monte-Carlo estimation

When the payoff P is too complex to allow to calculate E(P(S)), one
often uses Monte-Carlo methods that consists in simulating n independent
trajectories S() and using the estimator

1 ,
E(P(S) ~ =Y P(s1).
(P(S) ~ 5 3PS
The estimator is unbiased and has variance

Var (1 3 P(s<f>)> _ YelPO) _ L (pa(s)) - m2(p(s))) -
i=1

n n

EWT I TS AN (VL VS e E TSN DI eI Il A\ ffine processes, LDP and variance reduction

January 11, 2017 9 /18



Monte-Carlo estimation and optimal measure change

Monte-Carlo estimation with measure change

Let Q be a measure equivalent to P. Provided we can simulate S under

the measure Q, another alternative to estimate E(P(S)) is to simulate n
independent trajectories S(*@ and use the estimator

B(P(5) = 52 P(5) e (5)) ~ 2 3PSt 22 (5009,
i=1

The new estimator is also unbiased but its variance is

Var(% zn: P(S(i7Q))((j(g(5(i7Q))) _ Var® (P(S)ﬁg(S))
i=1
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Monte-Carlo estimation and optimal measure change

Optimal measure change

We consider the class of measures Py given by time dependent Esscher
transform .
dP, oJo Xs dbs

daP g [efofxsdes} ’

where @ is a finite signed measure on [0, t]. Denoting H(X) = log P(eX),
the variance minimization problem writes

t t
ing[exp (2H(X)— / Xs ds + logE [ el xsdesm ,
0

Unfortunately, we cannot solve this problem.
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Monte-Carlo estimation and optimal measure change

Asymptotic minimization problem

We therefore use the LDP of X and Varandhan’s lemma to obtain a proxy
of the minimization problem

infsup {2H(X) _ /Otxsdés _ /\*(x)} + /Ot ho([s, 1)) ds ,

before using, when H is concave, a result of [Genin and Tankov, 2016],
which states that

ir;fstj(p{2H(x)—/0txsd95—/\*(x)}—|—/0th(0([s, ) ds
=2 igf{ﬁ(9)+/oth(9([s, t]))ds} ,

H(0) = sup {H(x) — /Otxsdﬁs} .
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Numerical results

The case of the European put option

For the European put, we have H(x) = log(K — Spe*t),., for H(0) to be
finite, the measure 6 needs to be supported on {t}. We therefore denote
abusively 6, the value 6({t}). In this case,

H() = log <150> — flog <_i”_(/95°> .

Therefore, the optimal 6 for the European put option is given by

K —0K
argmin log <1_9> — Olog (i’_/{gso) + t h(0) .

OcR_
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The Heston model

We are considering the Heston model

Vs
dXs:_7d5+\/Vde51, Xo=0
dVs = M — Vi) ds + ¢/ Vs dW2 Vo =13

d(W W?)_=pds,

where Wl, W? are standard Brownian motions under the measure P, with
parameters A = 1.1, u =0.7, ( = 0.3, p = —0.5. In this case,

R (R

and we can obtain the optimal @ for the European put option numerically.
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Numerical results

Numerical results

We test our method by simulating, under both P and Py, 10000 price
trajectories S5 = eXs with 200 discretization steps. We obtain the
following results.

t 0.25 05 1 2 3
Variance ratio 4.18 359 295 242 204

Table : The variance ratio as function of the maturity for a European put option
with strike K = 1.

K 0.25 05 0.75 1 125 15 175

Variance ratio, t =1 8.07 4.49 3.46 3.05 269 255 235
Variance ratio, t =3 3.34 257 216 209 193 186 1.76

Table : The variance ratio as function of the strike for European put options with
maturities t =1 and t = 3.
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Numerical results

Numerical result for the Asian put option

For the Asian put option the log-payoff function is

50 . X;
H(x) =log | K p E e
j=1

This makes finding the optimal measure slightly more difficult, but the

problem remains tractable. We obtain for the Asian option the following
results.

K 02 04 06 0.8 1.0 1.2 15 20
Variance ratio 29.8 8.96 6.14 458 390 341 297 274

Table : The variance ratio as function of the strike for the Asian put option with
maturity t = 1.5.
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Numerical results

Thank you for attending this
presentation!
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