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Introduction

Presentation of the problem

Denote (Su)0≤u≤t an underlying and P(S) the payoff of a derivative on S .
The price of a derivative is generally calculated as the expectation
E(P(S)) under a certain risk-neutral measure P.

We write Su = S0e
Xu , where we model X as an affine stochastic volatility

model [Keller-Ressel, 2011].
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Introduction

Definition and properties of the model

Definition: An affine stochastic volatility model (Xs ,Vs)s≤t , is a
stochastically continuous, time-homogeneous Markov process such that(
eXs
)
s≤t is a martingale and

E
(
euXs+wVs

∣∣∣X0 = x ,V0 = v
)

= eφ(s,u,w)+ψ(s,u,w) v+u x ,

for all (s, u,w) ∈ R+× C2.

One of the main properties of affine stochastic volatility models is that the
functions φ and ψ satisfy generalized Riccati equations

∂tφ(t, u,w) = F (u, ψ(t, u,w)) , φ(0, u,w) = 0

∂tψ(t, u,w) = R(u, ψ(t, u,w)) , ψ(0, u,w) = w .

where F and R have Lévy-Khintchine form.
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Introduction

Definition and properties of the model

Theorem Under appropriate hypotheses,

There exists an interval I ⊇ [0, 1], such that for each u ∈ I , the
Generalized Riccati equations admit a unique stable equilibrium w(u)
and at most one other equilibrium w̃(u), which is unstable.

For u ∈ R\I , the Generalized Riccati equations do not have any
equilibrium.

We denote B(u) the basin of attraction of the stable solution w(u).
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Introduction

Definition and properties of the model

Denoting J = {u ∈ I : F (u,w(u)) <∞}. We have that

J is an interval such that [0, 1] ⊆ J ⊆ I .

For u ∈ I , w ∈ B(u) and ∆t > 0, we have

ψ

(
∆t

ε
, u, w

)
−→
ε→0

w(u) .

For u ∈ J, w ∈ B(u) and ∆t > 0,

ε φ

(
∆t

ε
, u, w

)
−→
ε→0

∆t h (u) ,

where h(u) = F (u,w(u)).

David Krief (Université Paris Diderot) Affine processes, LDP and variance reduction January 11, 2017 6 / 18



Trajectorial large deviations

A result of large deviations

Theorem Under some (strong but verifiable) hypotheses on the function
h, (X ε

s )0≤s≤t := (εXs/ε)0≤s≤t satisfies a LDP, as ε tends to 0, on
{x : [0, t]→ R : x0 = 0} equipped with the topology of point-convergence
with good rate function

Λ∗(x) =

∫ t

0
h∗(

�
xs

ac) ds +

∫ t

0
H
(
dνs
dθs

)
dθs ,

where

h∗(y) = lim
ε→0

sup
λ∈J
{λy − h(λ)} ,

H(y) = lim
ε→0

ε h∗(y/ε) = y
(
1{y>0} sup{u ∈ J}+ 1{y<0} inf{u ∈ J}

)
,

�
x ac is the derivative of the absolutely continuous part of x , νs is the
singular component of dxs with respect to ds and θs is any non-negative,
finite, regular, R-valued Borel measure, with respect to which νs is
absolutely continuous.

David Krief (Université Paris Diderot) Affine processes, LDP and variance reduction January 11, 2017 7 / 18



Trajectorial large deviations

A result of large deviations

Idea of the proof

1 Prove that for 0 < t1 ≤ ... ≤ tn ≤ t, (X ε
t1
, ...,X ε

tn) satisfies a LDP.

Use iteratively the tower property and the expression of the Laplace
transform of (Xs ,Vs) to obtain the exact expression for

E
[
e
∑n

j=1 λjXtj/ε

]
.

Use the behaviour of the solutions φ and ψ of the Generalized Riccati
equations when time tends to infinity to calculate

limε→0 ε log
(
E
[
e
∑n

j=1 λjXtj/ε

])
.

Use the Gärtner-Ellis Theorem.

2 Use the Dawson-Gärtner theorem to extend the LDP to the whole
trajectory of (X ε

s )s≤t .

3 Use a convex analysis result by [Rockafellar, 1971] to obtain the form
of the rate function.
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Monte-Carlo estimation and optimal measure change

Monte-Carlo estimation

When the payoff P is too complex to allow to calculate E(P(S)), one
often uses Monte-Carlo methods that consists in simulating n independent
trajectories S (i) and using the estimator

E(P(S)) ≈ 1

n

n∑
i=1

P(S (i)) .

The estimator is unbiased and has variance

Var

(
1

n

n∑
i=1

P(S (i))

)
=
Var(P(S))

n
=

1

n

(
E(P2(S))− E2(P(S))

)
.
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Monte-Carlo estimation and optimal measure change

Monte-Carlo estimation with measure change

Let Q be a measure equivalent to P. Provided we can simulate S under
the measure Q, another alternative to estimate E(P(S)) is to simulate n
independent trajectories S (i ,Q) and use the estimator

E(P(S)) = EQ
(
P(S)

dP
dQ

(S)

)
≈ 1

n

n∑
i=1

P(S (i ,Q))
dP
dQ

(S (i ,Q)) .

The new estimator is also unbiased but its variance is

Var
(1

n

n∑
i=1

P(S (i ,Q))
dP
dQ

(S (i ,Q))
)

=
VarQ

(
P(S) dP

dQ(S)
)

n

=
1

n

(
E
(
P2(S)

dP
dQ

(S)
)
− E2(P(S))

)
.
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Monte-Carlo estimation and optimal measure change

Optimal measure change

We consider the class of measures Pθ given by time dependent Esscher
transform

dPθ
dP

=
e
∫ t

0 Xs dθs

E
[
e
∫ t

0 Xs dθs
] ,

where θ is a finite signed measure on [0, t]. Denoting H(X ) = logP(eX ),
the variance minimization problem writes

inf
θ
E
[

exp

(
2H(X )−

∫ t

0
Xs dθs + logE

[
e
∫ t

0 Xs dθs
])]

.

Unfortunately, we cannot solve this problem.
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Monte-Carlo estimation and optimal measure change

Asymptotic minimization problem

We therefore use the LDP of X and Varandhan’s lemma to obtain a proxy
of the minimization problem

inf
θ

sup
x

{
2H(x)−

∫ t

0
xsdθs − Λ∗(x)

}
+

∫ t

0
h(θ([s, t])) ds ,

before using, when H is concave, a result of [Genin and Tankov, 2016],
which states that

inf
θ

sup
x

{
2H(x)−

∫ t

0
xsdθs − Λ∗(x)

}
+

∫ t

0
h(θ([s, t])) ds

= 2 inf
θ

{
Ĥ(θ) +

∫ t

0
h(θ([s, t])) ds

}
,

where

Ĥ(θ) = sup
x

{
H(x)−

∫ t

0
xsdθs

}
.
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Numerical results

The case of the European put option

For the European put, we have H(x) = log(K − S0e
xt )+, for Ĥ(θ) to be

finite, the measure θ needs to be supported on {t}. We therefore denote
abusively θ, the value θ({t}). In this case,

Ĥ(θ) = log

(
K

1− θ

)
− θ log

(
−θK/S0

1− θ

)
.

Therefore, the optimal θ for the European put option is given by

argmin
θ∈R−

log

(
K

1− θ

)
− θ log

(
−θK/S0

1− θ

)
+ t h(θ) .
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Numerical results

The Heston model

We are considering the Heston model

dXs = −Vs

2
ds +

√
Vs dW

1
s , X0 = 0

dVs = λ(µ− Vs) ds + ζ
√

Vs dW
2
s , V0 = 1.3

d
〈
W 1,W 2

〉
s

= ρ ds ,

where W 1,W 2 are standard Brownian motions under the measure P, with
parameters λ = 1.1, µ = 0.7, ζ = 0.3, ρ = −0.5. In this case,

h(u) = µ
λ

ζ

(
λ

ζ
− ρu

)
− µλ

ζ

√(
λ

ζ
− ρu

)2

+
1

4
−
(
u − 1

2

)2

and we can obtain the optimal θ for the European put option numerically.
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Numerical results

Numerical results

We test our method by simulating, under both P and Pθ, 10000 price
trajectories Ss = eXs , with 200 discretization steps. We obtain the
following results.

t 0.25 0.5 1 2 3

Variance ratio 4.18 3.59 2.95 2.42 2.04

Table : The variance ratio as function of the maturity for a European put option
with strike K = 1.

K 0.25 0.5 0.75 1 1.25 1.5 1.75

Variance ratio, t = 1 8.07 4.49 3.46 3.05 2.69 2.55 2.35
Variance ratio, t = 3 3.34 2.57 2.16 2.09 1.93 1.86 1.76

Table : The variance ratio as function of the strike for European put options with
maturities t = 1 and t = 3.
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Numerical results

Numerical result for the Asian put option

For the Asian put option the log-payoff function is

H(x) = log

K − S0

n

n∑
j=1

extj


+

.

This makes finding the optimal measure slightly more difficult, but the
problem remains tractable. We obtain for the Asian option the following
results.

K 0.2 0.4 0.6 0.8 1.0 1.2 1.5 2.0

Variance ratio 29.8 8.96 6.14 4.58 3.90 3.41 2.97 2.74

Table : The variance ratio as function of the strike for the Asian put option with
maturity t = 1.5.
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Numerical results
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Arxiv preprint: 1608.04621

Guasoni, P. and Robertson, S. (2008)
Optimal Importance Sampling with Explicit Formulas in Continuous Time,
Finance and Stochastics, Vol. 12 (2008)

Keller-Ressel, M. (2011)
Moment explosion and long-term behavior of affine stochastic volatility models,
Mathematical Finance, Vol. 21, No. 1 (January 2011)

Rockafellar, R. T. (1971)
Integrals which are Convex Functionals, II,
Pacific Journal of Mathematics, Vol. 39, No. 2 (January 2011)
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Numerical results

Thank you for attending this
presentation!
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