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The Model

Let W = (W 1, . . . ,W q) ∈ Rq be a B.M. and X solution to

dXt = b(Xt)dt + σ(Xt)dWt , X0 = x0 ∈ Rd ,with

(Hb,σ) ∀x , y ∈ Rd |b(x)− b(y)|+ |σ(x)− σ(y)| ≤ Cb,σ|x − y |,

Let X n be the Euler scheme with time step δ = T/n

dX n
t = b(Xηn(t))dt + σj(Xηn(t))dWt , ηn(t) = [t/δ]δ.

In this context

∀p ≥ 1, E1/p[ sup
0≤t≤T

|Xt − X n
t |p] ≤ Kb,σ,T

√
δ, with Kb,σ,T <∞.
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CI for Monte Carlo Euler method

The following result is due to Frikha and Menozzi (2012)

Let f : Rd → Rd be a continuous Lipschitz function satisfying

|f (x)− f (y)| ≤ [f ]Lip.|x − y | for all (x , y) ∈ Rd × Rd .

Assume we have condition (Hb,σ) with uniformly bounded σ(·).

If (X n
T ,i )1≤i≤N denote independent copies of the Euler scheme X n

T

with time step δ = T/n, Then for N ∈ N∗ and α ≥ 0

P

(
| 1
N

N∑
i=1

f (X n
T ,i )− Ef (X n

T )| ≥ α)

)
≤ 2 exp

(
−Nα2

2Cb,σ,T [f ]2Lip.

)
,

where Cb,σ,T is an explicit positive constant depending on b, σ, d
and T .
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Method used for the proof

Recall the Gaussian concentration (GC) property

For any Lipschitz function φ with constant [φ]Lip. and for
G ∼ N (0, Id) we have

E (exp(λ[φ(G )− Eφ(G )])) ≤ exp
(

1
2λ

2[φ]2Lip.

)
Conditionally to X n

(k−1)T
n

, 1 ≤ k ≤ n, write

X n
kT
n

law
= φk,n(G ), where

φk,n(x) = X n
(k−1)T

n

+ b(X n
(k−1)T

n

)Tn +
√

T
n σ(X n

(k−1)T
n

)x ,∀x ∈ Rd .

Prove that φk,n is Lipschitz with a suitable explicit constant
depending on k and n and apply the GC property.
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Our setting

We consider a SDE with constant diffusion coefficient:

Let W = (W 1, . . . ,W d) ∈ Rd be a B.M. and X solution to

dXt = b(Xt)dt + dWt , X0 = x0 ∈ Rd ,with

(Hb) ∀x , y ∈ Rd |b(x)− b(y)| ≤ Cb|x − y |,

Let X n be the Euler scheme with time step δ = T/n

dX n
t = b(Xηn(t))dt + dWt , ηn(t) = [t/δ]δ.

In this context

∀p ≥ 1, E1/p[ sup
0≤t≤T

|Xt − X n
t |p] ≤ Kb,T δ, with Kb,T <∞.
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The Euler Multilevel Monte Carlo scheme [Giles, 2008]

Use L + 1 Euler schemes with time steps
T

m`
for ` = 0, . . . , L

such that mL = n, so that

E(f (X n
T )) = E

(
f (Xm0

T )
)

+
L∑
`=1

E
(
f (Xm`

T )− f (Xm`−1

T )
)

The Multilevel method for Euler scheme estimator of E(f (X n
T ))

Q̂ =
1

N0

N0∑
k=0

f (X 1
T ,k) +

L∑
`=0

1

N`

N∑̀
k=1

(
f (Xm`

T ,k)− f (Xm`−1

T ,k )
)
.

Var(Q̂) = O
(∑L

`=0 N
−1
` m−2`

)
and Bias2(Q̂,Ef (XT )) = O

(
m−2L

)
For a given precison ε, by the complexity Theorem of Giles

N` = O
(
ε−2m−

3
2
`
)
 C ?MMC = O

(
ε−2
)
� CMC = O

(
ε−3
)
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Assumptions

Assumption (R1)

The function b ∈ C2(Rd ,Rd) and there exist finite constants [ḃ]∞
and a∆b such that

∀x ∈ Rd , ‖∇b(x)‖ ≤ [ḃ]∞,

∀x ∈ Rd , |∆b(x)−∆b(x0)| ≤ 2a∆b(1 + |x − x0|).

Assumption (R2)

1 Assumption (R1) is satisfied.

2 Moreover the function b ∈ C3(Rd ,Rd) and there exist positive
constants [b̈]∞ and a∇∆b such that

∀x ∈ Rd , ‖∇2b(x)‖ ≤ [b̈]∞,

∀x ∈ Rd , |∇[∆b(x)]−∇[∆b(x0)]| ≤ a∇∆b(1 + |x − x0|).
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Main result

Theorem 1

Let f ∈ C 1
b (Rd ,R) such that ∇f is a bounded Lipschitz function

with Lipchitz constant [ḟ ]Lip. and such that

|∇f | ≤ [ḟ ]∞.

If (R2) holds, then ∀ 0 ≤ α ≤ CC′ min
1≤`≤L

{m`N`}
L∑
`=0

m−2`N−1
` ,

P
(
|Q̂ − Ef (XmL

T )| ≥ α
)
≤ 2 exp

(
− α2

4C
∑L

`=0 m
−2`N−1

`

)

Recall that for the MMC Var(Q̂) = O
(∑L

`=0 N
−1
` m−2`

)
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Restriction

However, for ∀α ≥ CC′ min
1≤`≤L

{m`N`}
L∑
`=0

m−2`N−1
` we only have

P
(
|Q̂ − Ef (XmL

T )| ≥ α
)
≤ 2 exp

(
−C

2
min

1≤`≤L
m`N`α

)
.

This restriction on α is influenced by the choice of the sample
sizes N`.
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Discussion on the choice of the sample sizes (N`)0≤`≤L

Let us fix the precison ε = O
(
m−L

)
= O

(
n−1
)

Optimization rule

Var(Q̂) = O
(∑L

`=0 N
−1
` m−2`

)
∼ Bias2(Q̂,Ef (XT )) = O

(
m−2L

)
As seen before, this leads to the choice

N` = m2L− 3
2
` for 0 ≤ ` ≤ L.

This choice achieves an optimal complexity

C ?MMC = O
(
ε−2
)

= O
(
m2L

)
= O

(
n2
)

For this choice, our constraint on α rewrites

α ≤ CC′ min
1≤`≤L

{m`N`}
L∑
`=0

m−2`N−1
` = CC′m−

1
2
L = O

(
1√
n

)
This should be compared with the precision ε = O

(
1
n

)
.
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Maximizing the range of α

Question: Can we maximize the range of values for α while
keeping the same precision ε = O (1/n) ?

At first, note that α ∝ min1≤`≤Lm
`N`

1 Then a natural choice is the sequence

N` = 1
Lm

2L−`

This yields a complexity C?MMC = O
(
m2L

)
= O

(
n2
)

But Var(Q̂) = O
(
Lm−2L

)
= O

(
log(n)/n2

)
⇒ This leads to α ≤ CC′/L = CC′/log(n)

2 Another possible choice is given by

N` = m2L− 3
2
`1{0≤`≤βL} + m(2−β

2
)L−`1{βL≤`≤L}, β ∈ (0, 1]

This leads to C?MMC = O
(
n2
)

and Var(Q̂) = O
(
1/n2

)
⇒ This leads to α ≤ CC′m−

β
2 L = CC′/nβ/2
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Sketch of the proof

Recall That Q̂ = Q̂1 + Q̂2 where

Q̂1 :=
1

N0

N0∑
k=0

f (X 1
T ,k)− Ef (X 1

T )

and

Q̂2 :=
L∑
`=0

1

N`

N∑̀
k=1

(
f (Xm`

T ,k)− f (Xm`−1

T ,k )− E[f (Xm`

T ,k)− f (Xm`−1

T ,k )]
)
.

Then by Markov inequality we have

P
(
Q̂ − Ef (XmL

T ) ≥ α
)
≤ e−λαE

[
exp

(
λ[Q̂ − Ef (XmL

T )]
)]

≤ e−λαE
[
exp(λQ̂1)

]
E
[
exp(λQ̂2)

]
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First term.
By Frikha and Menozzi (2012), we have the existence of an explicit
positive constant C depending on b, d ,T and f such that

E
[
exp(λQ̂1)

]
≤ exp

{
λ2C

N0

}
.

Second term.
We use the independence property to write

E
[
exp(λQ̂2)

]
≤

L∏
`=1

(
E
[

exp

{
λ

N`

(
f (Xm`

T )− f (Xm`−1

T )− E[f (Xm`

T )− f (Xm`−1

T )]
)}])N`

.
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Houdré and Privault (2002) approach

Let F ∈ D1,2 be an FT -measurable s.t. E[eλ|F |] <∞, ∀λ > 0.

Clark Ocone Formula

F − EF =
∫ T

0 E(DsF |Fs)dWs

Markov inequality

P (F − EF ≥ α) ≤ e−λαE
(
eλ(F−EF )

)
= e−λαE

(
eλ

∫ T
0 E(DsF |Fs)dWs

)
Martingale property

If moreover ‖DF‖L∞ ≤ K , K > 0, then for some p > 1 we have

P (F − EF ≥ α) ≤ exp

(
1

2
pK 2Tλ2 − λα

)
.

Optimizing in λ yields P (F − EF ≥ α) ≤ exp

(
− α2

2pK 2T

)
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Then, by Clarck’s Ocone formula we have

f (Xm`

T )− f (Xm`−1

T )− E[f (Xm`

T )− f (Xm`−1

T )] =

∫ T

0
K `
r · dWr ,

where
K `
r ,j := E

[
Dj

r f (Xm`

T )−Dj
r f (Xm`−1

T )|Fr

]
.

Therefore,

E
[
exp(λQ̂2)

]
≤

L∏
`=1

(
E
[

exp

{
pλ

N`

∫ T

0
K `
r · dWr −

p2λ2

2N2
`

∫ T

0
|K `

r |2dr
}])N`

p

×
(
E
[

exp

{
p2λ2

2(p − 1)N2
`

∫ T

0
|K `

r |2dr
}]) (p−1)N`

p

.
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Now, by the Malliavin chain rule we have

|K `
r |2 =

∣∣∣E [DrX
m`

T ∇f (Xm`

T )−DrX
m`−1

T ∇f (Xm`−1

T )|Fr

]∣∣∣2 ,
Under our assumption, we also have

Lemma

For all 1 ≤ j ≤ d we have

( sup
r∈[0,T ]

sup
t∈[r ,T ]

|Dj
rXt |) ∨ ( sup

r∈[0,T ]
sup

t∈[r ,T ]
sup
n∈N∗

|Dj
rX

n
t |) ≤ eT [ḃ]∞ .

Then, the process (exp{pλN`
∫ t

0 K `
r · dWr − p2λ2

2N2
`

∫ t
0 |K

`
r |2dr})0≤t≤T is

a martingale, which leads us to

E
[
exp(λQ̂2)

]
≤

L∏
`=1

EN`
(p−1)

p

[
exp

{
p2λ2

2(p − 1)N2
`

∫ T

0
|K `

r |2dr
}]

.
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For ` ∈ {1, . . . , L}, we denote

U`
T := Xm`

T − Xm`−1

T .

Hence, using the above Lemma and the fact that ∇f is a
Lipschitz continuous and bounded function, we get

|K `
r |2 ≤ 2e2T [ḃ]∞ [ḟ ]2

lip
E
[
|U`

T |2|Fr

]
+ 2[ḟ ]2∞E

[
‖DrU

`
T‖2|Fr

]
,

By Cuachy Schwarz and Jensen inequalities we get

E
[

exp

{
p2λ2

2(p − 1)N2
`

∫ T

0
|K `

r |2dr
}]
≤

E
1
2

exp

2p2λ2e2T [ḃ]∞ [ḟ ]2
lip

(p − 1)N2
`

∫ T

0
E
[
|U`

T |2|Fr

]
dr


×

(
1

d

d∑
i=1

E

[
exp

{
2dp2λ2[ḟ ]2∞
(p − 1)N2

`

∫ T

0
E
[
|Di

rU
`
T |2|Fr

]
dr

}]) 1
2

.
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Theorem 2

Let m, n ∈ N∗, UT = X n
T − Xmn

T and ρ be a constant satisfying

0 ≤ ρ ≤ (mn)2

C1T (m − 1)2

where C1 is an explicit positive constant. Then, Under (R1), we
have the existence of an explicit positive constant C2 such that

E
[

exp

{
ρ

∫ T

0
E
[
|UT |2|Fr

]
dr

}]
≤ exp

{
ρC2

(
(m − 1)T

mn

)2
}
.
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Theorem 3

Let ρ be a constant satisfying

0 ≤ ρ ≤ (mn)2

C3T (m − 1)2

where C3 is an explicit positive constant. Then, Under (R2), we
have the existence of an explicit positive constant C4 such that for
all 1 ≤ j ≤ d we have

E
[

exp

{
ρ

∫ T

0
E
[
|Dj

rU
`
T |2|Fr

]
dr

}]
≤ exp

{
ρC4

(
(m − 1)T

mn

)2
}
.
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Then, according to theorems 2 and 3 combined with the above
inequalities we deduce that for

λ ≤ C′ min
1≤`≤L

m`N`

with C′ an explicit positive constant

P
(
Q̂ − Ef (XmL

T ) ≥ α
)
≤ exp {ψα(λ)} ,

where C is an explicit positive constant and

ψα(λ) := λ2C
L∑
`=0

m−2`N−1
` − λα,
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When α ≤ CC′ min
1≤`≤L

{m`N`}
L∑
`=0

m−2`N−1
` ,

min
λ∈[0,Cmin1≤`≤L m`N`]

ψα(λ) = − α2

4C
∑L

`=0 m
−2`N−1

`

Which leads to the

Concentration Inequality

P
(
Q̂ − Ef (XmL

T ) ≥ α
)
≤ exp

(
− α2

4C
∑L

`=0 m
−2`N−1

`

)
.
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Thank you !
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