CI for Multilevel Monte Carlo Euler method

Sketch of the proof

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Concentration inequalities for the Multilevel Monte Carlo Euler method applied to SDEs

Ahmed Kebaier Université Paris 13

joint work with Benjamin Jourdain

ADVANCES IN FINANCIAL MATHEMATICS

January 12th, 2016

Cl for Multilevel Monte Carlo Euler methoo 0000000 Sketch of the proof

Outline of The Talk

1 CI for the Monte Carlo Euler method

- Model
- The concentration inequality
- Used approach

2 CI for Multilevel Monte Carlo Euler method

- Framework
- Main results

3 Sketch of the proof

- CI with the Clark-Ocone representation formula
- Moment generating function of the error terms

CI for the Monte Carlo Euler method $_{\odot\odot\odot}$

CI for Multilevel Monte Carlo Euler method

Sketch of the proof

Outline

1 CI for the Monte Carlo Euler method

- Model
- The concentration inequality
- Used approach

2 CI for Multilevel Monte Carlo Euler method

- Framework
- Main results

3 Sketch of the proof

- CI with the Clark-Ocone representation formula
- Moment generating function of the error terms

Sketch of the proof

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Model

• Let
$$W = (W^1, \dots, W^q) \in \mathbb{R}^q$$
 be a B.M. and X solution to

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t, \quad X_0 = x_0 \in \mathbb{R}^d$$
, with

$$(\mathcal{H}_{b,\sigma}) \ \forall x, y \in \mathbb{R}^d \ |b(x) - b(y)| + |\sigma(x) - \sigma(y)| \le C_{b,\sigma}|x - y|,$$

• Let X^n be the Euler scheme with time step $\delta = T/n$

$$dX_t^n = b(X_{\eta_n(t)})dt + \sigma_j(X_{\eta_n(t)})dW_t, \quad \eta_n(t) = [t/\delta]\delta.$$

In this context

$$\forall p \geq 1, \mathbb{E}^{1/p}[\sup_{0 \leq t \leq T} |X_t - X_t^n|^p] \leq K_{b,\sigma,T} \sqrt{\delta}, \text{ with } K_{b,\sigma,T} < \infty.$$

CI for the Monte Carlo Euler method $\circ \bullet \circ$

CI for Multilevel Monte Carlo Euler method

Sketch of the proof

CI for Monte Carlo Euler method

The following result is due to Frikha and Menozzi (2012)

Let $f : \mathbb{R}^d \to \mathbb{R}^d$ be a continuous Lipschitz function satisfying

$$|f(x) - f(y)| \leq [f]_{\text{Lip.}}|x - y| \text{ for all } (x, y) \in \mathbb{R}^d imes \mathbb{R}^d.$$

Assume we have condition $(\mathcal{H}_{b,\sigma})$ with uniformly bounded $\sigma(\cdot)$.

If $(X_{T,i}^n)_{1 \le i \le N}$ denote independent copies of the Euler scheme X_T^n with time step $\delta = T/n$, Then for $N \in \mathbb{N}^*$ and $\alpha \ge 0$

$$\mathbb{P}\left(\left|\frac{1}{N}\sum_{i=1}^{N}f(X_{T,i}^{n})-\mathbb{E}f(X_{T}^{n})\right|\geq\alpha\right)\right)\leq 2\exp\left(\frac{-N\alpha^{2}}{2C_{b,\sigma,T}[f]_{\text{Lip.}}^{2}}\right),$$

where $C_{b,\sigma,T}$ is an explicit positive constant depending on *b*, σ , *d* and *T*.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ 釣�?

CI for the Monte Carlo Euler method $\circ \circ \bullet$

CI for Multilevel Monte Carlo Euler method 0000000

Sketch of the proof

Method used for the proof

• Recall the Gaussian concentration (GC) property

For any Lipschitz function ϕ with constant $[\phi]_{\text{Lip.}}$ and for $G \sim \mathcal{N}(0, I_d)$ we have

$$\mathbb{E}\left(\exp(\lambda[\phi(\mathcal{G})-\mathbb{E}\phi(\mathcal{G})])
ight)\leq\exp\left(rac{1}{2}\lambda^2[\phi]^2_{ ext{Lip.}}
ight)$$

• Conditionally to
$$X_{\frac{(k-1)T}{n}}^{n}$$
, $1 \le k \le n$, write
 $X_{kT}^{n} \stackrel{law}{=} \phi_{k,n}(G)$, where

n

$$\phi_{k,n}(x) = X_{\underline{(k-1)T}}^n + b(X_{\underline{(k-1)T}}^n)_{\underline{n}}^T + \sqrt{\frac{T}{n}}\sigma(X_{\underline{(k-1)T}}^n)_{\underline{n}}, \forall x \in \mathbb{R}^d.$$

• Prove that $\phi_{k,n}$ is Lipschitz with a suitable explicit constant depending on k and n and apply the GC property.

CI for Multilevel Monte Carlo Euler method

Sketch of the proof

Outline

1 CI for the Monte Carlo Euler method

- Model
- The concentration inequality
- Used approach

2 Cl for Multilevel Monte Carlo Euler method

- Framework
- Main results

3 Sketch of the proof

- CI with the Clark-Ocone representation formula
- Moment generating function of the error terms

CI for Multilevel Monte Carlo Euler method ••••••• Sketch of the proof

Our setting

We consider a SDE with constant diffusion coefficient:

- Let $W = (W^1, \dots, W^d) \in \mathbb{R}^d$ be a B.M. and X solution to $dX_t = b(X_t)dt + dW_t, \quad X_0 = x_0 \in \mathbb{R}^d$, with $(\mathcal{H}_b) \ \forall x, y \in \mathbb{R}^d \ |b(x) - b(y)| \le C_b |x - y|,$
- Let X^n be the Euler scheme with time step $\delta = T/n$

$$dX_t^n = b(X_{\eta_n(t)})dt + dW_t, \quad \eta_n(t) = [t/\delta]\delta.$$

In this context

$$\forall p \geq 1, \mathbb{E}^{1/p}[\sup_{0 \leq t \leq T} |X_t - X_t^n|^p] \leq K_{b,T}\delta, \text{ with } K_{b,T} < \infty.$$

CI for the Monte Carlo Euler method 000

CI for Multilevel Monte Carlo Euler method

Sketch of the proof

The Euler Multilevel Monte Carlo scheme [Giles, 2008]

• Use L + 1 Euler schemes with time steps $\frac{T}{m^{\ell}}$ for $\ell = 0, ..., L$ such that $m^{L} = n$, so that

$$\mathbb{E}(f(X_T^n)) = \mathbb{E}\left(f(X_T^{m^0})\right) + \sum_{\ell=1}^{L} \mathbb{E}\left(f(X_T^{m^\ell}) - f(X_T^{m^{\ell-1}})\right)$$

• The Multilevel method for Euler scheme estimator of $\mathbb{E}(f(X_T^n))$

$$\hat{Q} = \frac{1}{N_0} \sum_{k=0}^{N_0} f(X_{T,k}^1) + \sum_{\ell=0}^L \frac{1}{N_\ell} \sum_{k=1}^{N_\ell} \left(f(X_{T,k}^{m^\ell}) - f(X_{T,k}^{m^{\ell-1}}) \right).$$

$$\operatorname{Var}(\hat{Q}) = \mathcal{O}\left(\sum_{\ell=0}^{L} N_{\ell}^{-1} m^{-2\ell}\right) \text{ and } \operatorname{Bias}^{2}(\hat{Q}, \mathbb{E}f(X_{T})) = \mathcal{O}\left(m^{-2L}\right)$$

• For a given precison ε , by the complexity Theorem of Giles $N_{\ell} = \mathcal{O}\left(\varepsilon^{-2}m^{-\frac{3}{2}\ell}\right) \rightsquigarrow C^{\star}_{MMC} = \mathcal{O}\left(\varepsilon^{-2}\right) \ll C_{MC} = \mathcal{O}\left(\varepsilon^{-3}\right)$

CI for Multilevel Monte Carlo Euler method

Sketch of the proof

Assumptions

Assumption (R1)

The function $b \in C^2(\mathbb{R}^d, \mathbb{R}^d)$ and there exist finite constants $[\dot{b}]_{\infty}$ and $a_{\Delta b}$ such that

$$\begin{aligned} \forall x \in \mathbb{R}^d, \quad \|\nabla b(x)\| \leq [\dot{b}]_{\infty}, \\ \forall x \in \mathbb{R}^d, \ |\Delta b(x) - \Delta b(x_0)| \leq 2a_{\Delta b}(1 + |x - x_0|) \end{aligned}$$

Assumption (R2)

- **O** Assumption (R1) is satisfied.
- One over the function $b \in C^3(\mathbb{R}^d, \mathbb{R}^d)$ and there exist positive constants $[\ddot{b}]_{\infty}$ and $a_{\nabla \Delta b}$ such that

$$\begin{aligned} \forall x \in \mathbb{R}^d, \quad \|\nabla^2 b(x)\| \leq [\ddot{b}]_{\infty}, \\ \forall x \in \mathbb{R}^d, \ |\nabla[\Delta b(x)] - \nabla[\Delta b(x_0)]| \leq a_{\nabla \Delta b}(1 + |x - x_0|). \end{aligned}$$

Main result

Theorem 1

• Let $f \in C_b^1(\mathbb{R}^d, \mathbb{R})$ such that ∇f is a bounded Lipschitz function with Lipchitz constant $[\dot{f}]_{\text{Lip.}}$ and such that

 $|\nabla f| \leq [\dot{f}]_{\infty}.$

• If (R2) holds, then $\forall 0 \leq \alpha \leq \mathcal{CC}' \min_{1 \leq \ell \leq L} \{ m^{\ell} N_{\ell} \} \sum_{\ell=0}^{L} m^{-2\ell} N_{\ell}^{-1},$

$$\mathbb{P}\left(|\hat{Q} - \mathbb{E}f(X_T^{m^L})| \ge \alpha\right) \le 2\exp\left(-\frac{\alpha^2}{4C\sum_{\ell=0}^L m^{-2\ell}N_{\ell}^{-1}}\right)$$

• Recall that for the MMC $\operatorname{Var}(\hat{Q}) = \mathcal{O}\left(\sum_{\ell=0}^{L} N_{\ell}^{-1} m^{-2\ell}\right)$

CI for the Monte Carlo Euler method 000

CI for Multilevel Monte Carlo Euler method

Sketch of the proof

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Restriction

• However, for
$$\forall \alpha \geq \mathcal{CC}' \min_{1 \leq \ell \leq L} \{ m^{\ell} N_{\ell} \} \sum_{\ell=0}^{L} m^{-2\ell} N_{\ell}^{-1}$$
 we only have
$$\mathbb{P}\left(|\hat{Q} - \mathbb{E}f(X_T^{m^{L}})| \geq \alpha \right) \leq 2 \exp\left(-\frac{\mathcal{C}}{2} \min_{1 \leq \ell \leq L} m^{\ell} N_{\ell} \alpha \right).$$

• This restriction on α is influenced by the choice of the sample sizes $\textit{N}_{\ell}.$

CI for Multilevel Monte Carlo Euler method

Sketch of the proof

Discussion on the choice of the sample sizes $(N_{\ell})_{0 < \ell < L}$

• Let us fix the precison
$$\varepsilon = \mathcal{O}\left(m^{-L}\right) = \mathcal{O}\left(n^{-1}\right)$$

Optimization rule

$$\operatorname{Var}(\hat{Q}) = \mathcal{O}\left(\sum_{\ell=0}^{L} N_{\ell}^{-1} m^{-2\ell}\right) \sim \operatorname{Bias}^{2}(\hat{Q}, \mathbb{E}f(X_{T})) = \mathcal{O}\left(m^{-2L}\right)$$

• As seen before, this leads to the choice

$$N_\ell = m^{2L - rac{3}{2}\ell}$$
 for $0 \le \ell \le L$.

• This choice achieves an optimal complexity

$$C_{MMC}^{\star} = \mathcal{O}\left(\varepsilon^{-2}\right) = \mathcal{O}\left(m^{2L}\right) = \mathcal{O}\left(n^{2}\right)$$

• For this choice, our constraint on α rewrites

$$\alpha \leq \mathcal{CC'} \min_{1 \leq \ell \leq L} \{ m^{\ell} N_{\ell} \} \sum_{\ell=0}^{L} m^{-2\ell} N_{\ell}^{-1} = \mathcal{CC'} m^{-\frac{1}{2}L} = \mathcal{O}\left(\frac{1}{\sqrt{n}}\right)$$

• This should be compared with the precision $\varepsilon = \mathcal{O}\left(\frac{1}{n}\right)$.

CI for Multilevel Monte Carlo Euler method

Sketch of the proof

Maximizing the range of α

- Question: Can we maximize the range of values for α while keeping the same precision $\varepsilon = \mathcal{O}(1/n)$?
- At first, note that $\alpha \propto \min_{1 \leq \ell \leq L} m^{\ell} N_{\ell}$

Then a natural choice is the sequence

$$N_{\ell} = \frac{1}{L}m^{2L-\ell}$$

- This yields a complexity $C^{\star}_{MMC} = \mathcal{O}\left(m^{2L}\right) = \mathcal{O}\left(n^{2}\right)$
- But $\operatorname{Var}(\hat{Q}) = \mathcal{O}\left(Lm^{-2L}\right) = \mathcal{O}\left(\log(n)/n^2\right)$
- \Rightarrow This leads to $\alpha \leq \mathcal{CC'}/\mathcal{L} = \mathcal{CC'}/\log(n)$

Another possible choice is given by

$$N_{\ell} = m^{2L - \frac{3}{2}\ell} \mathbf{1}_{\{0 \le \ell \le \beta L\}} + m^{(2 - \frac{\beta}{2})L - \ell} \mathbf{1}_{\{\beta L \le \ell \le L\}}, \beta \in (0, 1]$$

• This leads to $C^{\star}_{MMC} = \mathcal{O}(n^2)$ and $\operatorname{Var}(\hat{Q}) = \mathcal{O}(1/n^2)$ \Rightarrow This leads to $\alpha \leq \mathcal{CC}' m^{-\frac{\beta}{2}L} = \mathcal{CC}'/n^{\beta/2}$

CI for Multilevel Monte Carlo Euler method

Sketch of the proof

Outline

1 CI for the Monte Carlo Euler method

- Model
- The concentration inequality
- Used approach

2 CI for Multilevel Monte Carlo Euler method

- Framework
- Main results

3 Sketch of the proof

- CI with the Clark-Ocone representation formula
- Moment generating function of the error terms

CI for Multilevel Monte Carlo Euler method

Sketch of the proof

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sketch of the proof

Recall That $\hat{Q}=\hat{Q}_1+\hat{Q}_2$ where

$$\hat{Q}_1 := rac{1}{N_0} \sum_{k=0}^{N_0} f(X_{T,k}^1) - \mathbb{E}f(X_T^1)$$

and

$$\hat{Q}_2 := \sum_{\ell=0}^{L} \frac{1}{N_{\ell}} \sum_{k=1}^{N_{\ell}} \left(f(X_{T,k}^{m^{\ell}}) - f(X_{T,k}^{m^{\ell-1}}) - \mathbb{E}[f(X_{T,k}^{m^{\ell}}) - f(X_{T,k}^{m^{\ell-1}})] \right).$$

Then by Markov inequality we have

$$\begin{split} \mathbb{P}\left(\hat{Q} - \mathbb{E}f(X_T^{m^L}) \geq \alpha\right) &\leq e^{-\lambda\alpha} \mathbb{E}\left[\exp\left(\lambda[\hat{Q} - \mathbb{E}f(X_T^{m^L})]\right)\right] \\ &\leq e^{-\lambda\alpha} \mathbb{E}\left[\exp(\lambda\hat{Q}_1)\right] \mathbb{E}\left[\exp(\lambda\hat{Q}_2)\right] \end{split}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• First term.

By Frikha and Menozzi (2012), we have the existence of an explicit positive constant C depending on b, d, T and f such that

$$\mathbb{E}\left[\exp(\lambda \hat{Q}_1)
ight] \leq \exp\left\{rac{\lambda^2 C}{N_0}
ight\}.$$

Second term.

We use the independence property to write

$$\mathbb{E}\left[\exp(\lambda \hat{Q}_{2})\right] \leq \prod_{\ell=1}^{L} \left(\mathbb{E}\left[\exp\left\{\frac{\lambda}{N_{\ell}}\left(f(X_{T}^{m^{\ell}}) - f(X_{T}^{m^{\ell-1}}) - \mathbb{E}[f(X_{T}^{m^{\ell}}) - f(X_{T}^{m^{\ell-1}})]\right)\right\}\right]\right)^{N_{\ell}}$$

CI for Multilevel Monte Carlo Euler method

Sketch of the proof

Houdré and Privault (2002) approach

Let $F \in \mathbb{D}^{1,2}$ be an \mathcal{F}_T -measurable s.t. $\mathbb{E}[e^{\lambda |F|}] < \infty$, $\forall \lambda > 0$.

Clark Ocone Formula

$$F - \mathbb{E}F = \int_0^T \mathbb{E}(D_s F | \mathcal{F}_s) dW_s$$

Markov inequality

$$\mathbb{P}(F - \mathbb{E}F \geq \alpha) \leq e^{-\lambda\alpha} \mathbb{E}\left(e^{\lambda(F - \mathbb{E}F)}\right) = e^{-\lambda\alpha} \mathbb{E}\left(e^{\lambda \int_0^T \mathbb{E}(D_s F | \mathcal{F}_s) dW_s}\right)$$

Martingale property

If moreover $\|\mathcal{D}F\|_{L^{\infty}} \leq K, K > 0$, then for some p > 1 we have $\mathbb{P}(F - \mathbb{E}F \geq \alpha) \leq \exp\left(\frac{1}{2}pK^{2}T\lambda^{2} - \lambda\alpha\right).$ Optimizing in λ yields $\mathbb{P}(F - \mathbb{E}F \geq \alpha) \leq \exp\left(-\frac{\alpha^{2}}{2pK^{2}T}\right)$

Sketch of the proof

Then, by Clarck's Ocone formula we have

$$f(X_T^{m^{\ell}}) - f(X_T^{m^{\ell-1}}) - \mathbb{E}[f(X_T^{m^{\ell}}) - f(X_T^{m^{\ell-1}})] = \int_0^T K_r^{\ell} \cdot dW_r,$$

where

$$\mathcal{K}_{r,j}^{\ell} := \mathbb{E}\left[\mathcal{D}_{r}^{j}f(X_{T}^{m^{\ell}}) - \mathcal{D}_{r}^{j}f(X_{T}^{m^{\ell-1}})|\mathcal{F}_{r}\right].$$

Therefore,

$$\begin{split} \mathbb{E}\left[\exp(\lambda \hat{Q}_{2})\right] &\leq \\ \prod_{\ell=1}^{L} \left(\mathbb{E}\left[\exp\left\{\frac{p\lambda}{N_{\ell}} \int_{0}^{T} K_{r}^{\ell} \cdot dW_{r} - \frac{p^{2}\lambda^{2}}{2N_{\ell}^{2}} \int_{0}^{T} |K_{r}^{\ell}|^{2} dr\right\}\right] \right)^{\frac{N_{\ell}}{p}} \\ &\times \left(\mathbb{E}\left[\exp\left\{\frac{p^{2}\lambda^{2}}{2(p-1)N_{\ell}^{2}} \int_{0}^{T} |K_{r}^{\ell}|^{2} dr\right\}\right] \right)^{\frac{(p-1)N_{\ell}}{p}}. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Sketch of the proof

Now, by the Malliavin chain rule we have

$$|K_r^{\ell}|^2 = \left| \mathbb{E} \left[\mathcal{D}_r X_T^{m^{\ell}} \nabla f(X_T^{m^{\ell}}) - \mathcal{D}_r X_T^{m^{\ell-1}} \nabla f(X_T^{m^{\ell-1}}) |\mathcal{F}_r \right] \right|^2,$$

Under our assumption, we also have

Lemma

For all
$$1 \le j \le d$$
 we have

 $(\sup_{r\in[0,T]}\sup_{t\in[r,T]}|\mathcal{D}_r^jX_t|)\vee(\sup_{r\in[0,T]}\sup_{t\in[r,T]}\sup_{n\in\mathbb{N}^*}|\mathcal{D}_r^jX_t^n|)\leq e^{T[\dot{b}]_{\infty}}.$

Then, the process $\left(\exp\left\{\frac{p\lambda}{N_{\ell}}\int_{0}^{t}K_{r}^{\ell}\cdot dW_{r}-\frac{p^{2}\lambda^{2}}{2N_{\ell}^{2}}\int_{0}^{t}|K_{r}^{\ell}|^{2}dr\right\}\right)_{0\leq t\leq T}$ is a martingale, which leads us to

$$\mathbb{E}\left[\exp(\lambda \hat{Q}_2)\right] \leq \prod_{\ell=1}^{L} \mathbb{E}^{N_{\ell} \frac{(p-1)}{p}} \left[\exp\left\{\frac{p^2 \lambda^2}{2(p-1)N_{\ell}^2} \int_0^T |K_r^{\ell}|^2 dr\right\}\right].$$

• For
$$\ell \in \{1, \ldots, L\}$$
, we denote

$$U_T^\ell := X_T^{m^\ell} - X_T^{m^{\ell-1}}$$

• Hence, using the above Lemma and the fact that ∇f is a Lipschitz continuous and bounded function, we get

$$|\mathcal{K}_r^{\ell}|^2 \leq 2e^{2\mathcal{T}[\dot{b}]_{\infty}}[\dot{f}]_{\text{lip}}^2 \mathbb{E}\left[|U_T^{\ell}|^2|\mathcal{F}_r\right] + 2[\dot{f}]_{\infty}^2 \mathbb{E}\left[\|\mathcal{D}_r U_T^{\ell}\|^2|\mathcal{F}_r\right],$$

• By Cuachy Schwarz and Jensen inequalities we get

$$\mathbb{E}\left[\exp\left\{\frac{p^{2}\lambda^{2}}{2(p-1)N_{\ell}^{2}}\int_{0}^{T}|\mathcal{K}_{r}^{\ell}|^{2}dr\right\}\right] \leq \\\mathbb{E}^{\frac{1}{2}}\left[\exp\left\{\frac{2p^{2}\lambda^{2}e^{2T[\dot{b}]_{\infty}}[\dot{f}]_{\mathrm{lip}}^{2}}{(p-1)N_{\ell}^{2}}\int_{0}^{T}\mathbb{E}\left[|U_{T}^{\ell}|^{2}|\mathcal{F}_{r}\right]dr\right\}\right] \times \\\left(\frac{1}{d}\sum_{i=1}^{d}\mathbb{E}\left[\exp\left\{\frac{2dp^{2}\lambda^{2}[\dot{f}]_{\infty}^{2}}{(p-1)N_{\ell}^{2}}\int_{0}^{T}\mathbb{E}\left[|\mathcal{D}_{r}^{i}U_{T}^{\ell}|^{2}|\mathcal{F}_{r}\right]dr\right\}\right]\right)^{\frac{1}{2}}.$$

900

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem 2

Let $m, n \in \mathbb{N}^*$, $U_T = X_T^n - X_T^{mn}$ and ρ be a constant satisfying

$$0 \le \rho \le \frac{(mn)^2}{C_1 T (m-1)^2}$$

where C_1 is an explicit positive constant. Then, Under (**R1**), we have the existence of an explicit positive constant C_2 such that

$$\mathbb{E}\left[\exp\left\{\rho\int_0^T \mathbb{E}\left[|U_T|^2|\mathcal{F}_r\right]dr\right\}\right] \leq \exp\left\{\rho C_2\left(\frac{(m-1)T}{mn}\right)^2\right\}.$$

Theorem 3

Let ρ be a constant satisfying

$$0 \le \rho \le \frac{(mn)^2}{C_3 T (m-1)^2}$$

where C_3 is an explicit positive constant. Then, Under (**R2**), we have the existence of an explicit positive constant C_4 such that for all $1 \le j \le d$ we have

$$\mathbb{E}\left[\exp\left\{\rho\int_{0}^{T}\mathbb{E}\left[|\mathcal{D}_{r}^{j}U_{T}^{\ell}|^{2}|\mathcal{F}_{r}\right]dr\right\}\right]\leq \exp\left\{\rho C_{4}\left(\frac{(m-1)T}{mn}\right)^{2}\right\}.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへで

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Then, according to theorems 2 and 3 combined with the above inequalities we deduce that for

$$\lambda \leq \mathcal{C}' \min_{1 \leq \ell \leq L} m^{\ell} N_{\ell}$$

with \mathcal{C}^\prime an explicit positive constant

$$\mathbb{P}\left(\hat{Q} - \mathbb{E}f(X_T^{m^L}) \geq lpha
ight) \leq \exp\left\{\psi_{lpha}(\lambda)
ight\},$$

where $\ensuremath{\mathcal{C}}$ is an explicit positive constant and

$$\psi_{lpha}(\lambda) := \lambda^2 \mathcal{C} \sum_{\ell=0}^{L} m^{-2\ell} N_{\ell}^{-1} - \lambda lpha,$$

۲

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

When
$$\alpha \leq \mathcal{CC}' \min_{1 \leq \ell \leq L} \{ m^{\ell} N_{\ell} \} \sum_{\ell=0}^{L} m^{-2\ell} N_{\ell}^{-1},$$

$$\min_{\lambda \in [0, \mathcal{C} \min_{1 \leq \ell \leq L} m^{\ell} N_{\ell}]} \psi_{\alpha}(\lambda) = -\frac{\alpha^2}{4\mathcal{C} \sum_{\ell=0}^{L} m^{-2\ell} N_{\ell}^{-1}}$$

Which leads to the

Concentration Inequality

$$\mathbb{P}\left(\hat{Q} - \mathbb{E}f(X_T^{m^L}) \ge \alpha\right) \le \exp\left(-\frac{\alpha^2}{4\mathcal{C}\sum_{\ell=0}^L m^{-2\ell}N_\ell^{-1}}\right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you !