Existence for a calibrated Regime Switching Local Volatility model

Benjamin Jourdain Joint work with Alexandre Zhou

Université Paris-Est. Mathrisk Chair "Risques financiers", fondation du risque

Advances in Financial Mathematics, 11 january 2017

Outline

- Processes matching given marginals
 - Motivation
 - Simulation of calibrated LSV models and theoretical results
- 2 A new fake Brownian motion
 - The studied problem
 - Main Result
 - Ideas of proof
- 3 Existence of Calibrated RSLV models
 - The calibrated RSLV model
 - Main results

Outline

- Processes matching given marginals
 - Motivation
 - Simulation of calibrated LSV models and theoretical results
- A new fake Brownian motion
 - The studied problem
 - Main Result
 - Ideas of proof
- 3 Existence of Calibrated RSLV models
 - The calibrated RSLV model
 - Main results

Trying to match marginals

- The market gives the prices of European Calls C(T, K) for T, K > 0 (idealized situation; in practice only $(C(T_i, K_i))_{1 \le i \le I}$).
- ullet A model $(S_t)_{t\geq 0}$ is calibrated to European options if

$$\forall T, K \geq 0, C(T, K) = \mathbb{E}\left[e^{-rT}\left(S_T - K\right)^+\right].$$

- By Breeden and Litzenberger (1978), {prices of European Call options for all T, K > 0} \iff {marginal distributions of $(S_t)_{t > 0}$ }.
- Dupire Local Volatility model (1992), matching market marginals:

$$dS_{t} = rS_{t}dt + \sigma_{Dup}(t, S_{t})S_{t}dW_{t}$$

$$\sigma_{Dup}(T, K) = \sqrt{2\frac{\partial_{T}C(T, K) + rK\partial_{K}C(T, K)}{K^{2}\partial_{KK}^{2}C(T, K)}}$$

LSV models

- Motivation: get processes with richer dynamics (e.g. take into account volatility risk) and satisfying marginal constraints.
- Lipton (2002) and Piterbarg (2007),...: Local and Stochastic Volatility (LSV) model

$$dS_t = rS_t + f(Y_t)\sigma(t, S_t)S_t dW_t$$

• "Adding uncertainty" to LV models by a random multiplicative factor $f(Y_t)$ where $(Y_t)_{t\geq 0}$ is a stochastic process and f>0.

Processes matching given marginals

Calibration of LSV Models

• By Gyongy's theorem (1988), the LSV model is calibrated to $C(T,K), \forall T, K > 0$ if

$$\mathbb{E}\left[(f(Y_t)\sigma(t,S_t)S_t)^2|S_t\right] = (\sigma_{Dup}(t,S_t)S_t)^2$$

$$\sigma(t,x) = \frac{\sigma_{Dup}(t,x)}{\sqrt{\mathbb{E}\left[f^{2}(Y_{t})|S_{t}=x\right]}}$$

The obtained SDE is nonlinear in the sense of McKean:

$$dS_t = rS_t dt + \frac{f(Y_t)}{\sqrt{\mathbb{E}[f^2(Y_t)|S_t]}} \sigma_{Dup}(t, S_t) S_t dW_t.$$

Simulation results

- Ren, Madan and Qian (2007): solve numerically the associated Fokker-Planck PDE, and get the joint-law of (S_t, Y_t) .
- Guyon and Henry-Labordère (2011): efficient calibration procedure based on kernel approximation of the conditional expectation.
 - Subsequent extension to stochastic interest rates, stochastic dividends, multidimensional local correlation models,...
- However, calibration errors seem to appear when the range of f(Y) is too large.

Theoretical results

- Abergel and Tachet (2010): perturbation of the constant f
 case (Dupire)

 existence for the restriction to a compact
 spatial domain of the associated Fokker-Planck equation when

 sup f inf f small.
- Global existence and uniquess to LSV models remain on open problem.

Outline

- Processes matching given marginals
 - Motivation
 - Simulation of calibrated LSV models and theoretical results
- 2 A new fake Brownian motion
 - The studied problem
 - Main Result
 - Ideas of proof
- 3 Existence of Calibrated RSLV models
 - The calibrated RSLV model
 - Main results

A simpler SDE

• The stochastic factor Y is a r.v. (does not evolve with time) with values in $\mathcal{Y} := \{y_1, ..., y_d\}$ such that

$$\forall i \in \{1, ..., d\}, \ \alpha_i = \mathbb{P}(Y = y_i) > 0.$$

It is independent from S_0 and $(W_t)_{t\geq 0}$.

- We suppose $\sigma_{Dup} \equiv 1$, $r = \frac{1}{2}$ and consider $X_t = \ln(S_t)$. • Since $\mathbb{E}\left[f^2(Y)|S_t\right] = \mathbb{E}\left[f^2(Y)|X_t\right]$ and neglecting the drift
- Since $\mathbb{E}\left[f^2(Y)|S_t\right] = \mathbb{E}\left[f^2(Y)|X_t\right]$ and neglecting the drift term $\frac{1}{2} \frac{1}{2} \frac{f^2(Y)}{\mathbb{E}[f^2(Y)|X_t]}$ with vanishing conditional expectation given X_t , we get

$$(extit{FBM}) egin{cases} dX_t = rac{f(Y)}{\sqrt{\mathbb{E}[f^2(Y)|X_t]}} dW_t \ X_0 \sim \mu_0. \end{cases}$$

with X_0 , Y and $(W_t)_{t>0}$ independent.

• If $X_0=0$, we expect that $X_t\sim \mathcal{N}_1(0,t)$.

Fake Brownian motion

Definition

A fake Brownian motion is a martingale $(M_t)_{t\geq 0}$ such that for all $t\geq 0$, $M_t\sim \mathcal{N}_1(0,t)$ and $(M_t)_{t\geq 0}$ is not a Brownian motion.

Discontinuous fake Brownian motions : Madan and Yor (2002), Hamza and Klebaner (2007), Henry-Labordère, Tan and Touzi (2016),...

Continuous fake Brownian motions: Albin (2010), Oleszkiewicz (2010), Baker, Donati-Martin and Yor (2011),...

Fake exponential Brownian motion: Hobson (2013)

A new continuous fake Brownian motion

Lemma

If the positive function f is not constant on \mathcal{Y} , then any solution to the SDE

$$dX_t = \frac{f(Y)}{\sqrt{\mathbb{E}\left[f^2(Y)|X_t\right]}}dW_t, X_0 = 0$$

with Y and $(W_t)_{t\geq 0}$ indep. is a continuous fake Brownian motion.

- By Gyongy's theorem, $\forall t \geq 0$, $X_t \sim \mathcal{N}_1(0,t)$.
- If $(X_t)_{t\geq 0}$ is a Brownian motion then a.s. $\forall t\geq 0$, $< X>_t=t$ i.e. ds a.e. $\frac{f^2(Y)}{\mathbb{E}[f^2(Y)|X_s]}=1=\frac{f(Y)}{\sqrt{\mathbb{E}[f^2(Y)|X_s]}}$ so that a.s. $\forall t\geq 0$, $X_t=W_t$. Therefore $X_t\perp Y$, $\mathbb{E}\left[f^2(Y)|X_t\right]=\mathbb{E}\left[f^2(Y)\right]$ and $f^2(Y)=\mathbb{E}\left[f^2(Y)\right]$ is constant.

Existence to SDE (FBM) and fake Brownian motion

We define for $i \in \{1, ..., d\}$, $\lambda_i := f^2(y_i)$.

Theorem

Condition (C): there exists a symmetric positive definite $\Gamma \in \mathbb{R}^{d \times d}$ such that for all $k \in \{1, ..., d\}$, the $d \times d$ matrix

$$\Gamma_{ij}^{(k)} = rac{\lambda_i + \lambda_j}{2} (\Gamma_{ij} + \Gamma_{kk} - \Gamma_{ik} - \Gamma_{jk})$$
 is positive definite on e_k^{\perp} .

Under (C), there exists a weak solution to the SDE (FBM).

If
$$d=2$$
, (C) is satisfied : choice $\Gamma=I_2$, if $d=3$, $(C)\Leftrightarrow \frac{1}{\beta_1\beta_2}+\frac{1}{\beta_2\beta_3}+\frac{1}{\beta_3\beta_1}>\frac{1}{4}$ with
$$\beta_1=\left|\sqrt{\frac{\lambda_2}{\lambda_3}}-\sqrt{\frac{\lambda_3}{\lambda_2}}\right|,\beta_2=\left|\sqrt{\frac{\lambda_3}{\lambda_1}}-\sqrt{\frac{\lambda_1}{\lambda_3}}\right|,\beta_3=\left|\sqrt{\frac{\lambda_1}{\lambda_2}}-\sqrt{\frac{\lambda_2}{\lambda_1}}\right|$$
 if $d\geq 4$, $\max_{1\leq k\leq d}\sum_{i\neq k}\lambda_i\sum_{i\neq k}\frac{1}{\lambda_i}\leq (d+1)^2\Rightarrow (C)$: $\Gamma=I_d$.

The associated Fokker Planck system

- For $i \in \{1, ..., d\}$, define p_i s.t., for $\phi \ge 0$ and measurable, $\mathbb{E}\left[\phi\left(X_t\right)1_{\{Y=y_i\}}\right] = \int_{\mathbb{R}}\phi(x)p_i(t,x)dx$.
- The associated Fokker-Planck system is:

$$\forall i \in \{1, ..., d\}, \partial_t p_i = \frac{1}{2} \partial_{xx}^2 \left(\frac{\sum_j p_j}{\sum_j \lambda_j p_j} \lambda_i p_i \right)$$
$$p_i(0) = \alpha_i \mu_0$$

• $\sum_i p_i$ is solution to the heat equation.

Rewriting into divergence form

The system satisfied by $p = (p_1, ..., p_d)$ can be rewritten in divergence form:

$$\partial_t p = \frac{1}{2} \partial_x \left(\sum_{k=1}^d w_k(p) M^{(k)}(p) \partial_x p \right)$$

where
$$w_k(p):=rac{\lambda_k p_k}{\sum_j \lambda_j p_j}$$
, $\sum_{k=1}^d w_k(p)=1$ and for $\overline{\lambda}(p):=rac{\sum_j \lambda_j p_j}{\sum_j p_j}$,

$$M^k(p) := \left(\begin{array}{cccc} \frac{\lambda_1}{\overline{\lambda}} & & & & \\ & \cdot & & \\ \left(1 - \frac{\lambda_1}{\overline{\lambda}}\right) & \cdot & \left(1 - \frac{\lambda_{k-1}}{\overline{\lambda}}\right) & 1 & \left(1 - \frac{\lambda_{k+1}}{\overline{\lambda}}\right) & \cdot & \left(1 - \frac{\lambda_d}{\overline{\lambda}}\right) \\ & & \frac{\lambda_{k+1}}{\overline{\lambda}} & & & \\ & & & \frac{\lambda_d}{\overline{\lambda}} \end{array} \right) \leftarrow \text{row } k$$

Computing Energy Estimates

• Multiply the system by $p^*(J_d + \epsilon \Gamma)$ where $(J_d)_{ij} = 1$ and $\epsilon > 0$, and integrate in $x \in \mathbb{R}$ by parts :

$$\frac{1}{2}\partial_t \left(\int_{\mathbb{R}} p^* (J_d + \epsilon \Gamma) p dx \right) = -\frac{1}{2} \int_{\mathbb{R}} \sum_{l=1}^d w_k(p) \partial_x p^* (J_d + \epsilon \Gamma) M^{(k)}(p) \partial_x p dx.$$

- By (C), $\exists \eta > 0$, $\forall y = (y_1, \dots, y_d) \in \mathbb{R}^d$ with $\sum_{j=1}^d y_j = 0$, $\bar{\lambda}(p) y^* \Gamma M^{(k)}(p) y = (y y_k e_k)^* \Gamma^{(k)}(y y_k e_k) \ge \eta |y|^2$.
- Since $J_d M^{(k)}(p) = J_d$ so that $y^* J_d M^{(k)}(p) y = (\sum_{i=1}^d y_i)^2$, we deduce that for ϵ small enough,

$$\inf_{p,y\in\mathbb{R}^d}\frac{1}{|y|^2}\sum_{k=1}^d w_k(p)y^*(J_d+\epsilon\Gamma)M^{(k)}(p)y>0.$$

 $\bullet \ \Rightarrow \ \mathsf{EE} \ \text{in} \ L^2([0,T],(H^1(\mathbb{R}))^d) \cap L^\infty([0,T],(L^2(\mathbb{R}))^d).$

Ideas of proof

Step 1/3: Existence to an approximate PDS when $\mu_0(dx) = p_0(x)dx$, $p_0 \in L^2(\mathbb{R})$

For $\epsilon > 0$, use Galerkin's method to solve an approximate PDE:

$$\begin{split} \partial_t \rho^\varepsilon &= \frac{1}{2} \partial_x \left(M^\varepsilon(\rho^\varepsilon) \partial_x \rho^\varepsilon \right) \ \, \rho^\varepsilon(0) = \left(\alpha_1, ..., \alpha_d \right) \rho_0. \\ \text{where } & \sum_{k=1}^d w_k(\rho) M_{ii}^{(k)}(\rho) = 1 + \frac{\sum_{l \neq i} \lambda_l \rho_l \sum_l (\lambda_i - \lambda_l) \rho_l}{\left(\sum_l \lambda_l \rho_l \right)^2} \\ & \longrightarrow M_{ii}^\varepsilon(\rho) = 1 + \frac{\sum_{l \neq i} \lambda_l \rho_l^+ \sum_l (\lambda_i - \lambda_l) \rho_l^+}{\left(\varepsilon \vee \sum_l \lambda_l \rho_l^+ \right)^2}, \\ \text{and for } & j \neq i, \ \, \sum_{k=1}^d w_k(\rho) M^{(k)}(\rho)_{ij} = \frac{\lambda_i \rho_i \sum_l (\lambda_l - \lambda_j) \rho_l}{\left(\sum_l \lambda_l \rho_l \right)^2} \\ & \longrightarrow M_{ij}^\varepsilon(\rho) = \frac{\lambda_i \rho_i^+ \sum_l (\lambda_l - \lambda_j) \rho_l^+}{\left(\varepsilon \vee \sum_l \lambda_l \rho_l^+ \right)^2}. \end{split}$$

Step 1/3: Existence to an approximate PDS when $\mu_0 \in L^2(\mathbb{R})$

- $\rho \mapsto M^{\epsilon}(\rho)$ locally Lipschitz and bounded $\to \exists !$ solution p_m^{ϵ} to a projection of the equation in dimension m.
- coercivity uniform in ϵ under (C) : \exists solution p^{ϵ} satisfying uniform in ϵ EE by taking the limit $m \to \infty$.
- Taking p_{ϵ}^- as test function, we show that $p_{\epsilon} \geq 0$.
- $\forall \epsilon, \forall i, \sum_j M_{ji}^{\epsilon} = 1 \implies \sum_j p_j^{\epsilon}$ solves the heat equation \longrightarrow lower bound uniform in ϵ (but not t, x) for $\sum_i \lambda_i p_i^{\epsilon}$.
- ullet $\epsilon \to 0$, existence of a solution to the original PDS.

Step 2/3: Existence to the PDS when $\mu_0 \in \mathcal{P}(\mathbb{R})$

- By mollification of μ_0 , we use the results of Step 1 to extract a solution to the PDS when $\mu_0 \in \mathcal{P}(\mathbb{R})$.
- We use the fact that $\sum_j p_j$ is solution to the heat equation to control the rate of explosion of $t\mapsto \int_{\mathbb{R}} \sum_{i=1}^d p_i^2(t,x) dx$ as $t\to 0$ uniformly in the mollification parameter.

Step 3/3: Existence of a weak the SDE (FBM)

Theorem (Figalli (2008))

For a: $[0,T] \times \mathbb{R} \to \mathbb{R}_+$ and b: $[0,T] \times \mathbb{R} \to \mathbb{R}$ meas. and bounded let $L_t \varphi(x) = \frac{1}{2} a(t,x) \varphi''(x) + b(t,x) \varphi'(x)$. If $[0,T] \ni t \mapsto \mu_t \in \mathcal{M}_+(\mathbb{R})$ is weakly continuous and solves the Fokker-Planck equation $\partial_t \mu_t = L_t^* \mu_t$ in the sense of distributions then there exists a probability measure P on $C([0,T],\mathbb{R})$ with marginals $(P_t = \mu_t)_{t \in [0,T]}$ such that $\forall \varphi \in C_k^2(\mathbb{R}), \ \varphi(X_t) - \int_0^t L_s \varphi(X_s) ds$ is a P-martingale.

 \Rightarrow for $i \in \{1, ..., d\}$, there exists a probab. P^i on $C([0, T], \mathbb{R})$ with $P^i_0 = \mu_0$ and $P^i_t = \frac{p_i(t, x) dx}{\alpha_i}$ for $t \in (0, T]$ and $\forall \varphi \in C^2_b(\mathbb{R})$,

$$\varphi(X_t) - \int_0^t \frac{f^2(y_i)\sum_{j=1}^d p_j}{\sum_{i=1}^d f^2(y_i)p_i}(s,X_s)\varphi''(X_s)ds \text{ is a } P^i\text{-martingale}.$$

$$P(dX,dY) = \sum_{i=1}^d \alpha_i P^i(dX) \otimes \delta_{y_i}(dY)$$
 weak solution.

Outline

- Processes matching given marginals
 - Motivation
 - Simulation of calibrated LSV models and theoretical results
- A new fake Brownian motion
 - The studied problem
 - Main Result
 - Ideas of proof
- 3 Existence of Calibrated RSLV models
 - The calibrated RSLV model
 - Main results

Presentation

• We consider the following dynamics (RSLV):

$$dS_t = rS_t dt + \frac{f(Y_t)}{\sqrt{\mathbb{E}\left[f^2(Y_t)|S_t\right]}} \sigma_{Dup}(t, S_t) S_t dW_t,$$

where $(Y_t)_{t\geq 0}$ takes values in \mathcal{Y} , and

$$\mathbb{P}\left(Y_{t+dt} = y_j | Y_t = y_i, S_t = x\right) = q_{ij}(x)dt.$$

- Switching diffusion, special case of LSV model.
- Jump distributions and intensities are functions of the asset level.

Assumptions

- (C), (Coerc. 1): f satisfies condition (C).
- (HQ), (Bounded I) $\exists \overline{q} > 0$, s.t. $\forall x \in \mathbb{R}$, $|q_{ij}(x)| \leq \overline{q}$.

We define $\tilde{\sigma}_{Dup}(t,x) := \sigma_{Dup}(t,e^x)$.

- (H1), (Bounded vol.) $\tilde{\sigma}_{Dup} \in L^{\infty}([0, T], W^{1,\infty}(\mathbb{R})).$
- (H2), (Coerc. 2) $\exists \underline{\sigma} > 0$ s.t. $\underline{\sigma} \leq \tilde{\sigma}_{Dup}$ a.e. on $[0, T] \times \mathbb{R}$,.
- (H3), (Regul. 1) $\exists \eta \in (0,1], \exists H_0 > 0$, s.t.

$$\forall s, t \in [0, T], \forall x, y \in \mathbb{R},$$

$$|\tilde{\sigma}_{Dup}(s,x) - \tilde{\sigma}_{Dup}(t,y)| \leq H_0 \left(|x-y|^{\eta} + |t-s|^{\eta}\right).$$

(HQ), (H1) and (H2) permit to generalize the energy estimations to the Fokker-Planck system associated with $((\ln(S_t), Y_t))_{t \in [0, T]}$ With (H3), uniqueness and Aronson estimates for the Fokker-Planck equation associated with $(\ln(S_t^{Dup}))_{t \in [0, T]}$ where

$$dS_t^{Dup} = \sigma_{Dup}(t, S_t^{Dup}) S_t^{Dup} dW_t + r S_t^{Dup} dt, \ S_0^{Dup} = S_0.$$

 \longrightarrow replaces the heat equation

Main results

Theorem

Under Conditions (H1)-(H3), (HQ) and (C) there exists a weak solution to the SDE (RSLV). Moreover, it has the same marginals as the solution to the local volatility SDE

$$dS_t^{Dup} = \sigma_{Dup}(t, S_t^{Dup}) S_t^{Dup} dW_t + r S_t^{Dup} dt, \ S_0^{Dup} = S_0.$$

- We generalize the results of Figalli to the regime switching case.
- Uniqueness?

Main obstacle to deal with usual LSV models

Corresponding generalized (FBM) equation

$$dX_t = \frac{f(Y_t)}{\sqrt{\mathbb{E}\left[f^2(Y_t)|X_t\right]}} dW_t$$

$$dY_t = \eta(Y_t)(\rho dW_t + \sqrt{1 - \rho^2} dB_t) + b(Y_t) dt$$

with $(B_t)_{t\geq 0}$ Brownian motion indep. of $(W_t)_{t\geq 0}$.

Typically $|\rho| \neq 1$ and (X_t, Y_t) should admit a density p(t, x, y). Even when $0 < \inf f \leq \sup f < \infty$, in the divergence form of the term

$$\begin{split} &\partial_{xx}\left(\frac{f^2(y)\int p(t,x,z)dz}{\int f^2(z)p(t,x,z)dz}p(t,x,y)\right) = \partial_x\left(\frac{f^2(y)\int p(t,x,z)dz}{\int f^2(z)p(t,x,z)dz}\partial_x p(t,x,y)\right) \\ &+ \partial_x\left(\frac{f^2(y)p(t,x,y)}{\int f^2(z)p(t,x,z)dz}\int \partial_x p(t,x,z)dz - \frac{f^2(y)p(t,x,y)\int p(t,x,z)dz}{\left(\int f^2(z)p(t,x,z)dz\right)^2}\int f^2(z)\partial_x p(t,x,z)dz\right) \end{split}$$

the red factors replacing $\frac{f^2(y_i)p_i(t,x)}{\sum_{j=1}^d f^2(y_j)p_j(t,x)}$ and $\frac{f^2(y_i)p_i(t,x)\sum_{j=1}^d p_j(t,x)}{(\sum_{j=1}^d f^2(y_j)p_j(t,x))^2}$ are no longer bounded (same problem for kernel approximations of

Main results

Thank you for your attention!