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i erélreizon Implied volatility

Motivation

Classical stochastic volatility models generate a constant short-maturity ATM

skew and a large-maturity one proportional to 7—1;

However, short-term data suggests a time decay of the ATM skew proportional to
T % a€(0,1/2).

One solution: adding volatility factors (risk of over-parameterisation).
Gatheral’s Double Mean-Reverting, Bergomi-Guyon, each factor acting on a
specific time horizon.

In the Lévy case (Tankov, 2010), the situation is different, as 7 | 0:
e in the pure jump case with f(71 1) |x|v(dx) < oo, then 02 (0) ~ cT;
e in the (a) stable case, o2 (0) ~ et for o € (1,2);
K2

o for out-of-the-money options, oi(k) ~ m
7| log (T
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Rough volatility models

Gatheral-Jaisson-Rosenbaum (2014)—based on Comte-Coutin-Renault—proposed a
fractional volatility model:

dSt = o‘tStdBt,
or = exp(Zt),

where B is a standard Brownian motion, and Z a fractional OU process satisfying
dZ; = k(0 — Z;)dt + vdW/H.

Time series of the Oxford-Man SPX realised variance as well as implied volatility
smiles of the SPX suggest that H € (0,1/2): short-memory volatility.

Is not statistically rejected by Ait-Sahalia-Jacod’s test (2009) for Itd diffusions.

Main drawback: loss of Markovianity (H # 1/2) rules out PDE techniques, and
Monte Carlo is computationally intensive. One way out is an efficient " Hybrid
scheme” of Bennedsen, Lunde and Pakkanen (2015).
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The Rough Bergomi model (Bayer-Friz-Gatheral)

Let Z be the process defined pathwise as
t
Z; = / Ka(s, t)dWs, for any t > 0,
0

with o € (—%,0), W a standard Brownian motion, and the kernel K:

Ka(u,s) := nv2a + 1(s — u)?, forall 0 < u <s,

for some strictly positive constant 7. The rough Bergomi model is then defined as

t 1 t
X, :/ V/VedBs — 5/ Veds, Xo=0,
0 0
2
Vi = Voexp <Zt - %tmﬂ) , Vo =1,

with B 1= pW + /1 — p2W=L, for p € (—1,1).
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Comments on Rough Bergomi

Proposition

o exp(X) is a true martingale.
e Foranyt >0, (Z:, B:) is a centered Gaussian random variable with covariance

2 2a+1 a+1
t ot
E(Btzt) = (ngtohq t > )

\/2o¢+

where ¢ := P12 and (Z, B) is Gaussian process. Furthermore

n%(2a + 1)

E(Z:2)= "

At
(s A )1 (s Vv t)%F (1 —a,2 4, Svr)

e log(V) is almost surely locally v-Hélder continuous, for all v € (O, a4+ %)

fo=H—1/2].
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VPR (RS e Gt Rough Bergomi model

Remarks

e Z is self-similar;

e Z is the Holmgren-Riemann-Liouville fBm, not the standard (Mandelbrot-van
Ness one), and is not stationary;

o Recall that for a standard fBm, for any u < t,

WtH‘szc”{/ut (ti%z H */ { 1/2 o (fs>11/2*”}dws}
= Z,(t) + Gu(t),

where G,(t) € FV whereas Z,(t) L F).
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Large deviations

Quick reminder on (pathwise) Large Deviations

Let & denote a real, separable Banach Space with norm || - || g, and (pe)e>0 a
sequence of probability measures on (&, % (&)).

Definition

The family (ue)=>0 satisfies a large deviations principle (LDP) as € tends to zero with
speed e~ ! and rate function A if, for any B € B(E),

— inf A(3) <liminfelog (ue(B)) < limsupelog (ue(B)) < — inf A(3).
3€EB° £l0 €10 3€B
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Large deviations

Quick reminder on (pathwise) Large Deviations

Let & denote a real, separable Banach Space with norm || - || g, and (pe)e>0 a
sequence of probability measures on (&, % (&)).
Definition

The family (ue)=>0 satisfies a large deviations principle (LDP) as € tends to zero with
speed e~ ! and rate function A if, for any B € B(E),

— inf A(3) <liminfelog (ue(B)) < limsupelog (ue(B)) < — inf A(3).
3€B° el0 €10 3€B

Lighter versions:
e Take & = R, then LDP yields, for any B C R,

pe(B) ~ exp {féxigfg/\(X)}
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Large deviations

Quick reminder on (pathwise) Large Deviations

Let & denote a real, separable Banach Space with norm || - || g, and (pe)e>0 a
sequence of probability measures on (&, % (&)).
Definition

The family (ue)e>0 satisfies a large deviations principle (LDP) as ¢ tends to zero with
speed e~ ! and rate function A if, for any B € B(E),

— inf A(3) <liminfelog (ue(B)) < limsupelog (ue(B)) < — inf A(3).
3€B° el0 €10 3€B

Lighter versions:
e Take & = R, then LDP yields, for any B C R,

1.
pe(B) ~ exp {*g jus /\(X)} .
e Take & = C, the space of continuous paths. LDP yields, for any B C C,
(8) > inf Ale)
~exps —— in .
He P c ooB P
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Asymptotic behaviour of Rough Bergomi

t 1 t 2
Rough Bergomi: X = / Vv VedBs—5 / Vids, Vi = Voexp (Zt I 2““)
0 0

For t,e > 0, define the rescaled random variables:
2
XE =P Xer, Z8:=6Pl2Z, VE:=ctPexp {Zf = 77?(st)ﬁ} , Bf:=£P/%B,,

where 8 :=2a + 1 € (0,1). Note that, for any t,e > 0,

e (law)

72U 7z, and Ve ey

so that, for any t > 0,

t 1 t
xg:/ \/v;ng_E/ VEds.
0 0
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Main result: Large deviations

Theorem (Jacquier-Pakkanen-Stone)

The sequence (X?),, satisfies a LDP with speed ¢# and rate function

A () := inf {A(x,y) fp = /0~ x(s)dy(s),y € BV OC} .

Define the operators (on C2 and C respectively)

M (;) (t,e) i= ((“";)((t’;’s)> sl (e 5 = B e (e/B/Zx(t) - %(st)ﬁ) :

as well as the function A : C([0, 1]?, R+ x R) — R4 by

A (E) = infdART): X):M(f)},

(Y) " { o9 (y y

O\ |2

(y) . and # is the RKHS of the measure induced by (Z, B).
Ea

~ 1
where A (X) == ‘
y 2
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Corollaries

Corollary (Small-time behaviour)

The process (t#X:) satisfies a LDP on R with speed t=# and rate function AX.

>0

Proof: By self-similarity.

Corollary (Implied volatility)
The following holds for all x # 0 (3 € (0,1)):

1 |xP?
Iy T
2 ng/\ )

2
lim 1185 (xt—ﬁ, t) =
I
y

t}0
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Proof Part 1: Reproducing Kernel Hilbert Space

Let (&, || - |l¢) be a real, separable Banach Space, and &* its topological dual, with
duality relationship (-, -) := (-,-)g+¢&. For a Gaussian measure p on &, introduce the
bounded, linear operator I : &* — & as [(f*) := [ (f*, f)fu(df).

Definition
The reproducing kernel Hilbert space (RKHS) .77, of  is defined as the completion

of I'(&*) with the inner product (F(f*), I'(g*)bgu = g(f*, f)(g*, f)exep(df).

|\

Proposition

The RKHS of the induced measure (on C?) of the two-dimensional process (Z, B) is

= {(/0 Kol ) (), | pf(u)du) fe LZ} :

with inner product

/' Ko (0, ) (u)du / Ko (u, -)fo(u)du
< 0 . |70 . > = (f1, f2)q2-
p /0 fu(u)du p /0 fy(u)du

Fa
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Proof Part 2: Contraction mappings

e Following Deuschel-Stroock (for Gaussian measures), the sequence (Z¢, B®).>0
satisfies a LDP with speed e=# and rate function
Iz, . iz e,

/\*(z;) = _
00, otherwise.

+ NI

€ €
o Pathwise, we view t +— (Z5,BS) T as an element of C?; (E’-‘tg) =M (ga) (t,€).

M is a continuous operator with respect to the C(72, R+ x R) norm || - ||co-
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Proof Part 3: LDP for stochastic integrals

e Claim: the sequence (I(v€, B)).>0 = (f; v/VEdBE)->0 satisfies a LDP.

o B =*t/2B 5o that

I(v, BY) = I(e°*v°, VeB)
holds a.s.;

o the sequence of (semi)-martingales (1/€B) is uniformly exponentially tight;
the sequence (Ve2®ve).5q is cadlag, and (F;)-adapted;
Garcia's Theorem implies that (I(v®, B®)).>¢ satisfies a LDP with speed e (
rate function

1+2a) and

A (@) = inf {/\(Z;) o =1I(x,y),y € BV ﬂC} .
. 1
e Final step: LDP for X = / \/vEABS — 5/ vids. For any § > 0,
0 0
|imfupa|ogP(|H(v5, B®)(1) — X{| > 8) = —c0
el0

and the theorem follows by exponential equivalence.
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Rough Bergomi, version 2

1
dXt = —Etht + vV thWt, XO = 0
Ve = fo(t)£(2l/CHVt), Vo > 0,

e The process V, defined as

t
Vi ::/ (t — u)f-az,,
0

is a centred Gaussian process with covariance structure

1 H_
E(V:Vs) = szH/ (E = u) (1 — uv)f-du, for any s, t € [0, 1];
0 S

1
° Hi::H:i:E;

* (£o(t))e>0 represents the initial forward variance curve: &o(t) = < (tod(t)),
where crg(t) is the fair strike of a variance swap with maturity t.
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VIX Futures

e For a fixed maturity T > 0, define the VIX at time T via the continuous-time
monitoring formula
‘FT) )

e Risk-neutral formula for the VIX future U+ with maturity T is then given by

1 T+A
VIX2 :=E (Z / d(Xs, Xs)ds
T

where A is equal to 30 days;

1 T+A
U1 :=E(VIXT|Fo) =E Z/ Er(s)ds| Fo | ;
T

=
o n7(t) :=exp (ZVCH/ (t — u)f- dZu> € Fr is lognormal, for t > T.
0

This is the main challenge for simulation, and we use the hybrid scheme by
Bennedsen-Lunde-Pakkanen (2016). However, since it is independent of &,
robustness of simulation schemes for the VIX will not be affected by the
qualitative properties of the initial forward variance curve.
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VIX Futures: dynamics and bounds

Proposition
The VIX dynamics are given by
1 ,T+A 2c2
vixi = = [ eotryee (5 [(e- T - 2] ) ar,
A Jr H
and the forward variance curve £7 in the rBergomi model admits the representation

202

Er(t) = &o(t)nT(t) exp (V :H [(t —T) — tzH]> , forany t > T.

The following bounds hold for VIX Futures Ut := E (VIX1|Fo):

1

{o(s)ds} ’ )

T+A

[(t— T)2H-t2H]}dt§mr§ {%/
,

1 T+A 2c2
3L e {5

4
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Numerical remark

Scenarios for the initial forward variance curve:
[2] : &o(t) =0.2342(1 + t)%;  [3]: &o(t) = 0.234%v/1 + t.

[1]: &(t) = 0.2342;

VIX futures scenario 1

Absolute difference

— Absolute difference

10

VIX futures scenario 2

1o

Absolute difference

— HonteCarlo — Absolute difference
o Lower bound .
Upper bound ooz
000
g s 10 TE 2 g G ) 15 20
wtirty watuy

VIX futures scenario 3

Absolute difference

— Honte-Carlo
Lower bound
Upper bound

— Absolute difference

watirty
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Further properties of the VIX

Proposition

The following hold:

02 .= V(log(AVIX%)) = —2log E(AVIX2) + log E[(AVIXZ)?] =: —2log &; + log &5,
2
11 = E(log(AVIXZ)) = log €; — %
with 7:= [T, T 4+ A], and

& :/7_50(1')(11“1

202

&= [ el exp{” (= TP (e TV 2] } Burdudt.

where éu,t is equal to zero if u = t and otherwise equal to ©yv¢,unt, available in closed
form in terms of the hypergeometric o F; function.

v
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Options on VIX

Assumption A: AVIX%_ is log-normal.

Proposition

e A VIX future is worth

1 ,T+A o2
—/ &o(t)dtexp [ —— ), under Assumption A,
A 8
U7 =
T+A 52
(= A / t)dtexp( 3 ) , in [BFG15].

e For 0 <t < T, let Ur(t) := E(VIX7|F:) denote the price at time t of a VIX
future maturing at T. Under Assumption A,

/ T+A o2
E[(U7(T)— K)+|Fo] = %/;_ . Eo(t)dtexp (7§) d(di) — Ko(do),

where K := é[log(K2A Iong+A o(t)dt + & ] d = —K+ %U, d = —K.
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VIX Futures scenario 1

Rough Bergomi, version 2

umerical tests: VIX Futures

Absolute difference

. — Lognorma appronmatien]| oo
Truncated Cholesky

oax 0000

o201 o000y

olegy T 17 TS 7o T o5 T 15

VIX Futures scenario 2 Absolute difference
— Log-normal approximation|

Truncated Cholesky oo

oo
VIX Futures scenario 3 Absolute difference
“— Log-normal approximation|
0.25¢ Truncated Cholesky o.0012
. Soom
o
oo
023 0.0002

10
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VIX Futures Calibration

Calibration Goal:
N
min V1 —Fi)?
y,IH z;( K 3:) )
=
where (Fi)i=1,...,n are the observed Futures prices on the time grid T; < ... < Ty,

2
V1, = % TTI_"JFA &o(t)dtexp <7%>.
Obtaining the initial forward variance curve: £ depends on the current term
structure of variance swaps, traded OTC. By replication, we calibrate a given implied
volatility surface (eSSVI) and use it for interpolation/extrapolation:

os(t, k)t = % {1 + p(0:)p(0:) k + \/(90(9t)k +0(0:))° +1— P(9t)2} ;

6.: observed ATM variance curve; shape function: () = n6=*(1 + §)*~L.
Correlation parameter:

p(0) =(A—=C)e B+ C,  for (A C)€(-1,1)% B >0,

ensuring that |p(:)| < 1. Fair strike (in total variance) of a variance swap:

S b2 +2 0
UO(t)Zt = —2E log (S—t) = %7
0 En

and thus &(t) = % (tog(t)) = op(t) + t%ag(t).
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Numerical results: SPX Fit

S&P 500 data at maturity 2015-12-11

ey

—012 ~0.10 ~0.08 ~0.06 ~0.04 ~0.02 0.00 0.02 0.04
Log-moneyness
B S&P 500 data at maturity 2016-02-29

M £
2
H
1
Zoa oz 00 02
Log-moneyness
o S&P 500 data at maturity 2017-12-15
-~
Tt
.
0.0 0.5

Log-moneyness

Figure: Calibration results on 4/12/2015 using traded SPX options.
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VIX Futures calibration

Algorithm
(i) Calibrate eSSVI to available SPX option data;
(i) compute the variance swap term structure (oo(t)?)¢>0;

(iii) extract the initial forward variance curve, &(-);
N

(iv) minimise (over v, H) the objective function Z(%T/. — 32
i=1
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VIX Futures calibration
VIX futures term structure Absolute difference

Absolute difference

Log-normal approx 00016
Observed VIX futures term structure

0.0010)

VIX futures pri
Absolute difference

0.150]

0.173| 0.0004)

0.170f 0.0002

3 04 05 06 07 08 BT oz o3 02 05 05 07 08
Maturity Maturity

Figure: VIX Futures calibration on 4/12/2015. Optimal parameters: (H,v) = (0.09237, 1.004).

VIX futures term structure Absolute difference
02 o
Log-normal approx. ‘Absolute difference
0208 0.0014]
Observed VIX futures term structure
0205 0.0012
Zo204 o £ 0.0019
goau S 0000y
2 0,200/ 3
H 2 0.000q
Z o108 \ @ 2
0.0004]
0194
. 0.0002
0194
05 01 02 03 04 05 06 07 %5 o1 02 03 04 05 05 07
Waturity Maturity

Figure: VIX Futures calibration on 4/1/2016. Optimal parameters: (H,v) = (0.0509, 1.2937).

Antoine Jacquier Remarks on rough Bergomi: asymptotics and calibration



Introduction
Large deviations Rough Bergomi, version 2
VIX Futures and options

Is H consistent between VIX Futures and SPX?
We calibrate the model on 4/12/2015 by fixing H = 0.09237 obtained through VIX.

S&P 500 data at maturity 2015-12-31

S&P 500 data at maturity 2015-12-11

Figure: Calibration of SPX smiles on 4/12/2015. Calibrated parameters: (v, p) = (1.19, —0.999).

Remark: Regarding v, we obtain a 20% difference between the one obtained through
VIX calibration and the one obtained through SPX. This suggests that the volatility of
volatility in the SPX market is 20% higher when compared to VIX. Nevertheless, we
emphasise the importance of an accurate & curve which could improve the fit to SPX
and reduce the difference in v to potentially unify a joint model.
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