Pricing CVA adjustments: An expansion approach for WWR

Marouan Iben Taarit
Natixis \& Cermics (Paris, France)

Advances in Financial Mathematics 2017
Paris, France

Acknowledgments

I am grateful to professor Bernard Lapeyre for valuable discussions and advises.

Introduction

- XVA is one of the most demanding issues in terms of prices and Greeks calculations
- global portfolio pricing and collateral netting
- incremental charging and reallocation
- management of cross-asset and hybrid risks (eg. WWR).
- Consistency with spot prices is required (reusing validated and proven pricers)
- We show in Iben Taarit (2015) how to upgrade existant pricers in order to account for WWR

A brief reminder on XVA (cont')

- At valuation time 0, we define the Bilateral Credit Valuation Adjustment (BCVA) as seen by the the bank B as

$$
\begin{equation*}
B C V A(0)=L G D_{C} \mathbb{E}\left[1_{\left\{\tau_{C} \leq \tau_{B}\right\}} 1_{\left\{\tau_{C}<T\right\}} D\left(0, \tau_{C}\right)\left(N P V\left(\tau_{C}, T\right)\right)^{+}\right] \tag{1}
\end{equation*}
$$

- Analog formula for the Bilateral Debt Valuation Adjustment (DVA)
- A classical simplifying assumption consists in considering the default of only one counterparty

$$
\begin{equation*}
\operatorname{UCVA}(0, T)=L G D_{C} \mathbb{E}\left[1_{\left\{\tau_{C}<T\right\}} D\left(0, \tau_{C}\right)\left(N P V\left(\tau_{C}, T\right)\right)^{+}\right] \tag{2}
\end{equation*}
$$

- Unilateral adjustments $=$ mutual exclusion of defaults

Pricing framework

- Main goal: approximated price (fast/accurate) of a contingent claim $h\left(X_{T}\right)$ subject to the default of the supplying party, i.e. $\tau<T$
- Stochastic intensity model for the default time τ

$$
\begin{cases}\tau^{\epsilon} & =\inf \left\{t>0 \mid \int_{0}^{t} \lambda_{s}^{\epsilon} d s>\xi\right\} \tag{3}\\ d \lambda_{t}^{\epsilon} & =\kappa(t)\left(\psi(t)-\lambda_{t}^{\epsilon}\right) d t+\epsilon v\left(t, \lambda_{t}^{\epsilon}\right) d W_{t} \\ \lambda_{0}^{\epsilon} & =\lambda_{0}>0\end{cases}
$$

where $W: \mathbb{R}$-valued $\mathrm{SBM}, \xi \xrightarrow{\mathcal{L}} \mathcal{E}(1), \epsilon \in[0,1]$

- In addition, let $\left(X_{t}\right)_{t \geq 0}$ be a \mathbb{R}^{n}-valued diffusion process governed by

$$
\begin{equation*}
d X_{t}=\left(\Phi(t)+\Theta(t) X_{t}\right) d t+\Sigma(t) d B_{t}, X_{0} \in \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

with $\Phi:[0, T] \rightarrow \mathbb{R}^{n}, \Theta:[0, T] \rightarrow \mathbb{R}^{n \times n}, \Sigma:[0, T] \rightarrow \mathbb{R}^{n \times d}$ and $\left(B_{t}\right)_{t \geq 0}$ a \mathbb{R}^{d}-valued SBM.

Pricing framework (cont')

- We define the instantaneous correlations $\rho=\left(\rho_{i}\right)_{i=1 \ldots d}$ such that

$$
\begin{equation*}
d\left\langle W, B_{i}\right\rangle_{t}=\rho_{i} d t, 1 \leq i \leq d \tag{5}
\end{equation*}
$$

- $\rho \neq 0$ and $v\left(t, \lambda_{t}^{\epsilon}\right) \neq 0 \Rightarrow$ Wrong-way risk
- Recovery in market value convention (recovery rate δ)

$$
\begin{equation*}
u_{h, \delta}^{\epsilon}(0, T)=\mathbb{E}\left[h\left(X_{T}\right) 1_{\{\tau>T\}}+(1-\delta) u_{h, \delta}^{\epsilon}\left(\tau^{-}, T\right) 1_{\{\tau \leq T\}}\right] \tag{6}
\end{equation*}
$$

- Duffie and Singleton (1999)

$$
\begin{equation*}
u_{h, \delta}^{\epsilon}(0, T)=\mathbb{E}\left[\exp \left(-(1-\delta) \int_{0}^{T} \lambda_{t}^{\epsilon} d t\right) h\left(X_{T}\right)\right] \tag{7}
\end{equation*}
$$

Pricing methodology

Main Objective

$\boldsymbol{u}_{\boldsymbol{h}, \delta}^{\boldsymbol{\epsilon}=\mathbf{1}}(\boldsymbol{S}, \boldsymbol{T})=u_{h, \delta}^{\epsilon=0}(S, T)+$ weighted sum of Greeks of $\mathbb{E}\left[h\left(X_{T}\right)\right]+$ Error where

- $u_{h, \delta}^{0}(T)=e^{-(1-\delta)} \int_{0}^{T} \lambda_{t}^{0} d t \mathbb{E}\left[h\left(X_{T}\right)\right]$ (classical pricing)
- the weighted sum of Greeks of $\mathbb{E}\left[h\left(X_{T}\right)\right]$ is given by the system
- we want the accuracy to be bounded using
- The regularity of the intensity process λ_{t}^{ϵ}
- The dependence of $u_{h, \delta}^{\epsilon}$ on $\int \lambda_{s}^{\epsilon} d s$

Comparison with similar works

- Expansion approach for credit intensity diffusion already addressed in Muroi 2005 and Muroi 2012
- Linearization of the a payoff function $\Phi\left(r^{\epsilon}(T), \lambda^{\epsilon}(T)\right)$ (smoothness requirements)
- We follow Benhamou et al. (2009, 2010a,b). However, the setting is fundamentally different.
- We perform expansion for $e^{-(1-\delta)} \int_{0}^{T} \lambda_{s}^{\epsilon} d s$
- Minimal dependence on the regularity of h

Theorem (Second order approximation)

Under regularity assumption of the drift and diffusion of $\left(\lambda_{t}^{\epsilon}\right)$, one has

$$
\begin{aligned}
u_{h, \delta}^{\epsilon=1}(0, T) & =u_{h, \delta}^{\epsilon=0}(0, T)+(1-\delta)^{2} C_{0,1}(T) u_{h, \delta}^{\epsilon=0}(0, T) \\
& -(1-\delta) C_{1,1}(T) \cdot \operatorname{Greek}^{(1)}\left(T, X_{T}\right) \\
& -(1-\delta)\left(C_{2,1}(T)-(1-\delta) C_{2,2}(T)\right) \cdot \operatorname{Greek}^{(2)}\left(T, X_{T}\right) \\
& + \text { Errorf}_{2}^{\epsilon=1}
\end{aligned}
$$

- $C_{0,1}(T)=\frac{1}{2} \int_{0}^{T}\left(\int_{t}^{T} e^{-\int_{0}^{s} \kappa(u) d u} d s v(t)\right)^{2} d t$
- $\left[C_{1,1}(T)\right]_{i}=\int_{0}^{T}\left(\int_{t}^{T} e^{-\int_{0}^{s} \kappa(u) d u} d s\right) v(t)[\Sigma(t, T) \rho]_{i} d t$
- $\left[C_{2,1}(T)\right]_{i, j}=$
$\int_{0}^{T}\left(\int_{t}^{T}\left(\int_{s}^{T} e^{-\int_{0}^{u} \kappa(v) d v} d u\right) v^{(1)}(s)[\Sigma(s, T) \rho]_{i} d s\right) v(t)[\Sigma(t, T) \rho]_{j} d t$
- $\left[C_{2,2}(T)\right]_{i, j}=\ldots$

Numerical experiments

- Log-normal diffusion of the spot S_{t}. Default parameters are

T	$r / q / d$	Σ
10	0	30%

- 3 models of λ_{t}^{ϵ}

\mathcal{N}	$\mathcal{L N}$	\mathcal{C}
$v\left(t, \lambda_{t}^{\epsilon}\right)=\bar{v}_{n}$	$v\left(t, \lambda_{t}^{\epsilon}\right)=\bar{v}_{l n} \lambda_{t}^{\epsilon}$	$v\left(t, \lambda_{t}^{\epsilon}\right)=\bar{v}_{c} \sqrt{\lambda_{t}^{\epsilon}}$

- 2 risk regimes

Mid Risk	λ_{0}	κ	ψ	ρ	\bar{v}_{n}	$\bar{v}_{l n}$	\bar{v}_{c}
	0.01	1	0.02	30%	1%	50%	20%
High Risk	λ_{0}	κ	ψ	ρ	\bar{v}_{n}	$\bar{v}_{l n}$	\bar{v}_{c}
	0.03	1.6	0.08	90%	3%	100%	50%

- Benchmarking versus Monte Carlo (Paths $=10^{5}, 24$ steps/ year)

Contingent Call option

	K/S	CI	Proxy	2nd Order Exp.	3nd Order Exp.
$>$	80\%	0.12\%	1.22\%	0.00\%	0.00\%
	100\%	0.15\%	1.42\%	0.00\%	0.00\%
	120\%	0.17\%	1.55\%	0.00\%	0.00\%
\geq	80\%	0.12\%	1.22\%	0.00\%	0.00\%
	100\%	0.15\%	1.37\%	0.00\%	0.00\%
	120\%	0.17\%	1.54\%	0.00\%	0.00\%
$\stackrel{\boxed{V}}{\Xi}$	80\%	0.12\%	3.28\%	0.52\%	0.07\%
	100\%	0.14\%	3.43\%	$\square 0.54 \%$	0.05\%
	120\%	0.17\%	4.11\%	0.65\%	0.06\%

(a) Relative Error: Mid risk parameters

	K/S	Cl	Proxy	2nd Order Exp.	3nd Order Exp.
$>$	80%	0.12%	7.65%	0.00%	0.00%
	100%	0.14%	8.57%	0.00%	0.00%
	120%	0.17%	9.32%	0.00%	0.00%
\geq	80%	0.11%	23.28%	2.34%	1.17%
	100%	0.13%	27.84%	2.84%	1.57%
	120%	0.16%	31.29%	3.13%	1.69%
\cong	80%	0.11%	40.50%		7.19%
	100%	0.12%	47.17%		8.55%

(b) Relative Error: High risk parameters

A Wrong-way risk adjustment for CVA/DVA

- UCVA is usually approximated by

$$
\begin{aligned}
\operatorname{UCVA}(0) & \approx \operatorname{LGD}_{C} \sum_{m=1}^{M} D\left(0, T_{m}\right) \mathbb{E}\left[\left(1_{T_{m-1}<\tau_{C}}-1_{T_{m}<\tau_{C}}\right)\left(V\left(T_{m}, X_{T_{m}}\right)\right)^{+}\right] \\
& \approx \operatorname{LGD}_{C} \sum_{m=1}^{M} D\left(0, T_{m}\right)\left(u_{V^{+}}^{\epsilon}\left(T_{m-1}, T_{m}\right)-u_{V^{+}}^{\epsilon}\left(T_{m}, T_{m}\right)\right)
\end{aligned}
$$

where

$$
u_{V^{+}, 0}^{\epsilon}:(s, t) \mapsto \mathbb{E}\left[e^{-\int_{0}^{s} \lambda_{\omega}^{\epsilon} d \omega}\left(V\left(t, X_{t}\right)\right)^{+}\right]
$$

Consequence

With $\delta=0$ and $h=V^{+}$, our approximation formulas yield

$$
U C V A(0)=U C V A^{0}(0)+\sum_{m=1}^{M} \text { weighted sum of Greeks of } \mathbb{E}\left[\left(V\left(X_{T_{m}}\right)\right)^{+}\right]+\text {Error }
$$

Wrong-way Risk Adjustment $=U C V A(0)-U C V A^{0}(0)$
$=$ Weighted sum of exposure Greeks

A WWR adjustment in the bilateral framework We apply the same methodology

BCVA (0)

$$
\begin{aligned}
& \approx \operatorname{LGD}_{C} \sum_{m=0}^{M} D\left(0, T_{m}\right) \mathbb{E}\left[\left(1_{\left\{\tau_{C} \geq T_{m-1}\right\}}-1_{\left\{\tau_{C} \geq T_{m}\right\}}\right) 1_{\left\{\tau_{B}>T_{m}\right\}}\left(V\left(T_{m}, X_{T_{m}}\right)\right)^{+}\right] \\
& \approx \operatorname{LGD}_{C} \sum_{m=\mathbf{1}}^{M} D\left(0, T_{m}\right)\left(u_{V^{+}, 0}^{\epsilon}\left(T_{m-\mathbf{1}}, T_{m}\right)-u_{V^{+}, 0}^{\epsilon}\left(T_{m}, T_{m}\right)\right)
\end{aligned}
$$

where

$$
\left.\left.\begin{array}{rl}
u_{V^{+}, 0}^{\epsilon}(s, t) & =\mathbb{E}\left[1_{\left\{\tau_{C} \geq s\right\}} 1_{\left\{\tau_{B} \geq t\right\}}\left(V\left(t, X_{t}\right)\right)^{+}\right] \\
& =\mathbb{E}\left[\left(e^{-\int_{0}^{s} \lambda_{\omega}^{C, \epsilon}} d \omega\right.\right. \\
-\int_{0}^{t} \lambda_{\omega}^{B, \epsilon} d \omega
\end{array}\right)\left(V\left(t, X_{t}\right)\right)^{+}\right]
$$

Consequence

With $\delta=0$ and $h=V^{+}$, our approximation formulas yield

$$
B C V A(0)=U C V A^{0}(0)+\sum_{m=1}^{M} \text { weighted sum of Greeks of } \mathbb{E}\left[\left(V\left(X_{T_{m}}\right)\right)^{+}\right]+\text {Error }
$$

Bilateral Wrong-way Risk $=U W W R_{C}+U W W R_{B}+$ First to default Risk

References I

Benhamou, Eric, Gobet, Emmanuel, \& Miri, Mohamed. 2009. Smart expansion and fast calibration for jump diffusions. Finance and stochastics, vol.13(4), pp.563-589, 13(4), 563-589.
Benhamou, Eric, Gobet, Emmanuel, \& Miri, Mohamed. 2010a. Expansion formulas for European options in a local volatility model. International journal of theoretical and applied finance, vol.13(4), pp.602-634, 13(04), 603-634.

Benhamou, Eric, Gobet, Emmanuel, \& Miri, Mohamed. 2010b. Time Dependent Heston Model. Siam journal on financial mathematics, vol.1, pp.289-325, 1(1), 289-325.
Iben Taarit, Marouan. 2015. Pricing derivatives with credit risk: Expansion formulas for stochastic intensity models. Preprint.
Muroi, Yoshifumi. 2005. Pricing contingent claims with credit risk:
Asymptotic expansion approach. Finance and stochastics, 9(3), 415-427.
Muroi, Yoshifumi. 2012. Pricing credit derivatives using an asymptotic expansion approach. The journal of computational finance, 15(3), 135.

