Pricing CVA adjustments: An expansion approach for WWR

Marouan Iben Taarit

Natixis & Cermics (Paris, France)

Advances in Financial Mathematics 2017 Paris, France

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Acknowledgments

I am grateful to professor Bernard Lapeyre for valuable discussions and advises.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction

- XVA is one of the most demanding issues in terms of prices and Greeks calculations
 - global portfolio pricing and collateral netting
 - incremental charging and reallocation
 - ▶ management of cross-asset and hybrid risks (eg. WWR).
- Consistency with spot prices is required (reusing validated and proven pricers)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

• We show in Iben Taarit (2015) how to upgrade existant pricers in order to account for *WWR*

A brief reminder on XVA (cont')

• At valuation time 0, we define the Bilateral Credit Valuation Adjustment (BCVA) as seen by the the bank *B* as

 $BCVA(0) = LGD_{C}\mathbb{E}\left[\mathbf{1}_{\{\tau_{C} \leq \tau_{B}\}}\mathbf{1}_{\{\tau_{C} < T\}}D(0, \tau_{C})(NPV(\tau_{C}, T))^{+}\right]$ (1)

- Analog formula for the Bilateral Debt Valuation Adjustment (DVA)
- A classical simplifying assumption consists in considering the **default** of only one counterparty

$$UCVA(0, T) = LGD_{C}\mathbb{E}\left[\mathbf{1}_{\{\tau_{C} < T\}}D(0, \tau_{C})(NPV(\tau_{C}, T))^{+}\right]$$
(2)

• Unilateral adjustments = mutual exclusion of defaults

Pricing framework

- Main goal: approximated price (fast/accurate) of a contingent claim $\frac{h(X_T)}{h(X_T)}$ subject to the default of the supplying party, i.e. $\tau < T$
- ullet Stochastic intensity model for the default time au

$$\begin{cases} \tau^{\epsilon} &= \inf \left\{ t > 0 | \int_{0}^{t} \lambda_{s}^{\epsilon} ds > \xi \right\} \\ d\lambda_{t}^{\epsilon} &= \kappa \left(t \right) \left(\psi \left(t \right) - \lambda_{t}^{\epsilon} \right) dt + \epsilon \nu \left(t, \lambda_{t}^{\epsilon} \right) dW_{t} \\ \lambda_{0}^{\epsilon} &= \lambda_{0} > 0 \end{cases}$$
(3)

where W : \mathbb{R} -valued SBM, $\xi \xrightarrow{\mathcal{L}} \mathcal{E}(1), \epsilon \in [0, 1]$

• In addition, let $(X_t)_{t\geq 0}$ be a \mathbb{R}^n -valued diffusion process governed by

$$dX_{t} = \left(\Phi\left(t\right) + \Theta\left(t\right)X_{t}\right)dt + \Sigma\left(t\right)dB_{t}, X_{0} \in \mathbb{R}^{n}$$

$$\tag{4}$$

with $\Phi: [0, T] \to \mathbb{R}^n$, $\Theta: [0, T] \to \mathbb{R}^{n \times n}$, $\Sigma: [0, T] \to \mathbb{R}^{n \times d}$ and $(B_t)_{t \ge 0}$ a \mathbb{R}^d -valued SBM.

Pricing framework (cont')

• We define the instantaneous correlations $ho=(
ho_i)_{i=1...d}$ such that

$$d \langle W, B_i \rangle_t = \rho_i dt , \ 1 \le i \le d$$
(5)

- ho
 eq 0 and $u \left(t, \lambda_t^\epsilon
 ight)
 eq 0 \Rightarrow$ Wrong-way risk
- Recovery in market value convention (recovery rate δ)

 $u_{h,\delta}^{\epsilon}(0,T) = \mathbb{E}\left[h(X_{T})\mathbf{1}_{\{\tau > T\}} + (1-\delta)u_{h,\delta}^{\epsilon}(\tau^{-},T)\mathbf{1}_{\{\tau \leq T\}}\right]$ (6)

Duffie and Singleton (1999)

$$u_{h,\delta}^{\epsilon}(0,T) = \mathbb{E}\left[\exp\left(-\left(1-\delta\right)\int_{0}^{T}\lambda_{t}^{\epsilon}dt\right)h\left(X_{T}\right)\right]$$
(7)

ション ふゆ く 山 マ ふ し マ うくの

Pricing methodology

Main Objective

 $u_{h,\delta}^{\epsilon=1}(S,T) = u_{h,\delta}^{\epsilon=0}(S,T) + \text{weighted sum of Greeks of } \mathbb{E}[h(X_T)] + Error$

where

•
$$u_{h,\delta}^{0}(T) = e^{-(1-\delta)\int_{0}^{T}\lambda_{t}^{0}dt}\mathbb{E}[h(X_{T})]$$
 (classical pricing)

• the weighted sum of Greeks of $\mathbb{E}\left[h\left(X_{\mathcal{T}}\right)\right]$ is given by the system

うして ふゆう ふほう ふほう うらつ

- we want the accuracy to be bounded using
 - The regularity of the intensity process λ_t^ϵ
 - The dependence of $u_{h,\delta}^{\epsilon}$ on $\int \lambda_s^{\epsilon} ds$

Comparison with similar works

- Expansion approach for credit intensity diffusion already addressed in Muroi 2005 and Muroi 2012
 - Linearization of the a payoff function $\Phi(r^{\epsilon}(T), \lambda^{\epsilon}(T))$ (smoothness requirements)

- We follow Benhamou *et al.* (2009, 2010a,b). However, the setting is **fundamentally different**.
 - We perform expansion for $e^{-(1-\delta)\int_0^T \lambda_s^{\epsilon} ds}$
 - Minimal dependence on the regularity of h

Theorem (Second order approximation)

Under regularity assumption of the drift and diffusion of (λ_t^ϵ) , one has

$$\begin{split} u_{h,\delta}^{\epsilon=1}\left(0,\,T\right) &= u_{h,\delta}^{\epsilon=0}\left(0,\,T\right) + (1-\delta)^2 \, \textit{C}_{0,1}\left(T\right) u_{h,\delta}^{\epsilon=0}\left(0,\,T\right) \\ &- (1-\delta) \, \textit{C}_{1,1}\left(T\right).\textit{Greek}^{(1)}\left(T,\,X_T\right) \\ &- (1-\delta) \left(\textit{C}_{2,1}\left(T\right) - (1-\delta) \,\textit{C}_{2,2}\left(T\right)\right).\textit{Greek}^{(2)}\left(T,\,X_T\right) \\ &+ \textit{Error}_2^{\epsilon=1} \end{split}$$

•
$$C_{0,1}(T) = \frac{1}{2} \int_0^T \left(\int_t^T e^{-\int_0^s \kappa(u) du} ds \nu(t) \right)^2 dt$$

- $[C_{1,1}(T)]_{i} = \int_{0}^{T} \left(\int_{t}^{T} e^{-\int_{0}^{s} \kappa(u) du} ds \right) \nu(t) \left[\Sigma(t, T) \rho \right]_{i} dt$
- $[C_{2,1}(T)]_{i,j} = \int_0^T \left(\int_t^T \left(\int_s^T e^{-\int_0^u \kappa(v) dv} du \right) v^{(1)}(s) \left[\Sigma(s,T) \rho \right]_i ds \right) v(t) \left[\Sigma(t,T) \rho \right]_j dt$

うして ふゆう ふほう ふほう うらつ

• $[C_{2,2}(T)]_{i,j} = ...$

Numerical experiments

• Log-normal diffusion of the spot S_t . Default parameters are

Т	r/q/d	Σ	
10	0	30%	

• 3 models of λ_t^{ϵ}

N	\mathcal{LN}	С	
$\nu\left(t,\lambda_{t}^{\epsilon}\right)=\bar{\nu}_{n}$	$\nu\left(t,\lambda_{t}^{\epsilon}\right)=\bar{\nu}_{ln}\lambda_{t}^{\epsilon}$	$\nu\left(t,\lambda_{t}^{\epsilon}\right)=\bar{\nu}_{c}\sqrt{\lambda_{t}^{\epsilon}}$	

• 2 risk regimes

Mid Risk	λ_0	κ	ψ	ρ	νī _n	Ū _{In}	\bar{v}_c
	0.01	1	0.02	30%	1%	50%	20%
High Risk	λ_0	κ	ψ	ρ	ν _n	νī _{In}	$\bar{\nu}_c$
	0.03	1.6	0.08	90%	3%	100%	50%

• Benchmarking versus Monte Carlo (Paths = 10⁵, 24 steps/ year)

Contingent Call option

	K/S	CI	Proxy	2nd Order Exp.	3nd Order Exp.
>	80%	0.12%	1.22%	0.00%	0.00%
	100%	0.15%	1.42%	0.00%	0.00%
	120%	0.17%	1.55%	0.00%	0.00%
	80%	0.12%	1.22%	0.00%	0.00%
Z	100%	0.15%	1.37%	0.00%	0.00%
	120%	0.17%	1.54%	0.00%	0.00%
	80%	0.12%	3.28 %	0.52%	0.07%
GR	100%	0.14%	3.43%	0.54%	0.05%
	120%	0.17%	4.11%	0.65%	0.06%

(a) Relative Error: Mid risk parameters

	K/S	CI	Proxy	2nd Order Exp.	3nd Order Exp.
	80%	0.12%	7.65%	0.00%	0.00%
>	100%	0.14%	8.57%	0.00%	0.00%
	120%	0.17%	9.32%	0.00%	0.00%
	80%	0.11%	23.28%	2.34%	1.17%
Z	100%	0.13%	27.84%	2.84%	1.57%
	120%	0.16%	31.2 <mark>9</mark> %	3.13%	1.69%
	80%	0.11%	40.50%	7.19%	3.72%
١ װ	100%	0.12%	47.17%	8.55%	4.55%
	120%	0.15%	54.05%	9.76%	5.41%

(b) Relative Error: High risk parameters \mathbb{R} , \mathbb{R} and \mathbb{R}

A Wrong-way risk adjustment for CVA/DVA

• UCVA is usually approximated by

$$UCVA(0) \approx LGD_{C} \sum_{m=1}^{M} D(0, T_{m}) \mathbb{E} \left[\left(\mathbf{1}_{T_{m-1} < \tau_{C}} - \mathbf{1}_{T_{m} < \tau_{C}} \right) \left(V(T_{m}, X_{T_{m}}) \right)^{+} \right]$$
$$\approx LGD_{C} \sum_{m=1}^{M} D(0, T_{m}) \left(u_{V^{+}}^{\epsilon} \left(T_{m-1}, T_{m} \right) - u_{V^{+}}^{\epsilon} \left(T_{m}, T_{m} \right) \right)$$

where

$$u_{V^{+},0}^{\epsilon}:(s,t)\mapsto \mathbb{E}\left[e^{-\int_{0}^{s}\lambda_{\omega}^{\epsilon}d\omega}\left(V\left(t,X_{t}\right)\right)^{+}\right]$$

Consequence

With $\delta=0$ and $h=V^+$, our approximation formulas yield

$$UCVA(0) = UCVA^{0}(0) + \sum_{m=1}^{M}$$
 weighted sum of Greeks of $\mathbb{E}\left[(V(X_{T_{m}}))^{+}\right] + \text{Error}$
Wrong-way Risk Adjustment = $UCVA(0) - UCVA^{0}(0)$

= Weighted sum of *exposure* Greeks

A WWR adjustment in the bilateral framework We apply the same methodology

$$BCVA(0) \approx LGD_{C} \sum_{m=0}^{M} D(0, T_{m}) \mathbb{E} \left[\left(\mathbf{1}_{\{\tau_{C} \geq T_{m-1}\}} - \mathbf{1}_{\{\tau_{C} \geq T_{m}\}} \right) \mathbf{1}_{\{\tau_{B} > T_{m}\}} (V(T_{m}, X_{T_{m}}))^{+} \right] \\ \approx LGD_{C} \sum_{m=1}^{M} D(0, T_{m}) \left(u_{V^{+},0}^{\epsilon}(T_{m-1}, T_{m}) - u_{V^{+},0}^{\epsilon}(T_{m}, T_{m}) \right)$$

where

$$\begin{split} u_{V^+,\mathbf{0}}^{\varepsilon}\left(s,t\right) &= \mathbb{E}\left[\mathbf{1}_{\{\tau_{C} \geq s\}}\mathbf{1}_{\{\tau_{B} \geq t\}}\left(V\left(t,X_{t}\right)\right)^{+}\right] \\ &= \mathbb{E}\left[\left(e^{-\int_{\mathbf{0}}^{s}\lambda_{\omega}^{C,\varepsilon}d\omega}e^{-\int_{\mathbf{0}}^{t}\lambda_{\omega}^{B,\varepsilon}d\omega}\right)\left(V\left(t,X_{t}\right)\right)^{+}\right] \end{split}$$

Consequence

With $\delta=0$ and $h=V^+$, our approximation formulas yield

$$BCVA(0) = UCVA^{0}(0) + \sum_{m=1}^{M}$$
 weighted sum of Greeks of $\mathbb{E}\left[\left(V(X_{\mathcal{T}_{m}})\right)^{+}\right] + \mathsf{Error}$

Bilateral Wrong-way $Risk = UWWR_C + UWWR_B +$ First to default Risk

References |

Benhamou, Eric, Gobet, Emmanuel, & Miri, Mohamed. 2009. Smart expansion and fast calibration for jump diffusions. *Finance and stochastics, vol.13(4), pp.563-589,* **13(**4), 563–589.

- Benhamou, Eric, Gobet, Emmanuel, & Miri, Mohamed. 2010a. Expansion formulas for European options in a local volatility model. *International journal of theoretical and applied finance, vol.13(4), pp.602-634*, **13**(04), 603–634.
- Benhamou, Eric, Gobet, Emmanuel, & Miri, Mohamed. 2010b. Time Dependent Heston Model. Siam journal on financial mathematics, vol.1, pp.289-325, 1(1), 289-325.
- Iben Taarit, Marouan. 2015. Pricing derivatives with credit risk: Expansion formulas for stochastic intensity models. *Preprint*.
- Muroi, Yoshifumi. 2005. Pricing contingent claims with credit risk: Asymptotic expansion approach. *Finance and stochastics*, 9(3), 415-427.
 Muroi, Yoshifumi. 2012. Pricing credit derivatives using an asymptotic expansion approach. *The journal of computational finance*, 15(3), 135.