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Motivation

Objectives:

Derive sharp bounds for the prices of VIX futures using the full
information of S&P 500 smiles

Derive the corresponding sub/superreplicating portfolios

Test our results on market data: see if we improve the classical bounds
and portfolios

Characterize the market smiles for which the classical bounds are sharp

Study specific families of smiles µ1, µ2 and corresponding portfolios
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Reminder on the VIX

VIX = Volatility IndeX

Published every 15 seconds by the Chicago Board Options Exchange

Indicator of short-term options-implied volatility

Definition:
VIX = the implied volatility of the 30-day variance swap on the
S&P 500

Equivalently, using the link between realized variance and log-contracts
(Neuberger, Dupire, 1990-94):
VIX at date T1 = the implied volatility of a log-contract that delivers
ln(S2/S1) at T2 = T1 + τ (τ = 30 days):

V 2 ≡ (VIXT1)2 ≡ − 2

τ
PriceT1

[
ln

(
S2

S1

)]
S1 = S&P 500 at T1, S2 = S&P 500 at T2, V = VIX at T1

We have assumed zero interest rates, repos, and dividends for simplicity

The log-contract can itself be replicated at T1 using OTM call and put
options on the S&P 500 with maturity T2
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Reminder on VIX futures

The VIX index cannot be traded, but VIX futures can

VIX future expiring at T1 = the instrument that pays V ≡ VIXT1 at T1

V 2 ≡ VIX2
T1

can be replicated using vanilla options on the S&P 500:

V 2 ≡ (VIXT1)2 ≡ − 2

τ
PriceT1

[
ln

(
S2

S1

)]
=⇒ To replicate exactly V 2 at time 0: buy − 2

τ
lnS2, sell − 2

τ
lnS1

But its square root V ≡ VIXT1 cannot

Instead, sub/superreplication in the S&P 500 and its options leads to
model-free lower/upper bounds on the price of the VIX future
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Options on realized variance vs Options on implied variance

Options on realized variance Options on implied variance

Call/put on realized variance VIX future, call/put on VIX
Path-dependent option Vanilla option on listed option prices

on underlying asset on underlying asset
Skorokhod embedding problem Martingale optimal transport

Carr and Lee, 2003 De Marco and Henry-Labordère, 2015
Dupire, 2005

Carr and Lee, 2008
Cox and Wang, 2013

...

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles



Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Options on realized variance vs Options on implied variance

Option on realized variance Option on implied variance

Call/put on realized variance VIX future, call/put on VIX
Path-dependent option Vanilla option on listed option prices

on underlying asset on underlying asset
Skorokhod embedding problem Martingale optimal transport

Carr and Lee, 2003 De Marco and Henry-Labordère, 2015
Dupire, 2005

Carr and Lee, 2008
Cox and Wang, 2013

...

Julien Guyon Bloomberg L.P.

Bounds for VIX Futures given S&P 500 Smiles



Introduction LP formulation Analytical sub/superreplicating portfolios When are the classical bounds optimal? Specific families of smiles Conclusion

Options on realized variance vs Options on implied variance

Option on realized variance Option on implied variance

Call/put on realized variance VIX future, call/put on VIX
Path-dependent option Vanilla option on listed option prices

on underlying asset on underlying asset
Skorokhod embedding problem Martingale optimal transport

Carr and Lee, 2003 De Marco and Henry-Labordère, 2015
Dupire, 2005 This talk

Carr and Lee, 2008
Cox and Wang, 2013

...
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Notations and assumptions

µ1 = risk-neutral distribution of S1 ←→ market smile of S&P at T1

µ2 = risk-neutral distribution of S2 ←→ market smile of S&P at T2
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Notations and assumptions

L(x) = − 2
τ

lnx: convex, decreasing

V 2 ≡ (VIXT1)2 ≡ − 2

τ
PriceT1

[
ln

(
S2

S1

)]
= PriceT1

[
L

(
S2

S1

)]
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Notations and assumptions

We denote Ei ≡ Eµi and assume

Ei[Si] = S0, Ei[|L(Si)|] <∞, i ∈ {1, 2}

We define

σ2
12 ≡ E2[L(S2)]− E1[L(S1)]

= PriceT0=0

[
L

(
S2

S1

)]
= PriceT0=0[V 2]

No calendar arbitrage =⇒ µ1 � µ2 (convex order) =⇒ σ2
12 ≥ 0

σ12 is the implied volatility at time 0 of the forward-starting
log-contract/variance swap on the S&P 500 starting at T1 and maturing
at T2
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Classical superreplication of VIX futures
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Classical sub/superreplication of VIX futures

Replicate exactly V 2 at time 0: buy L(S2), sell L(S1)

Classical upper bound = σ12

Classical lower bound = 0

Concavity of the square root =⇒ Classical upper bound is good, classical
lower bound is bad
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1. LP formulation
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Optimal sub/superreplication formulation: LP problem (De Marco,
Henry-Labordère, 2015)

Available instruments:

At time 0:
u1(S1): vanilla payoff maturity T1 (including cash)
u2(S2): vanilla payoff maturity T2
Cost: E1[u1(S1)] + E2[u2(S2)]

At time T1:
∆S(S1, V )(S2 − S1): delta hedge
∆L(S1, V )(L(S2/S1)− V 2): enter in ∆L(S1, V ) log-contracts
Cost: 0

Superreplicating portfolio Usuper: for all (s1, s2, v) ∈ (R∗+)2 × R+

u1(s1) + u2(s2) + ∆S(s1, v)(s2 − s1) + ∆L(s1, v)

(
L

(
s2
s1

)
− v2

)
≥ v

Optimal model-free no-arbitrage upper bound:

Psuper ≡ infUsuper

{
E1[u1(S1)] + E2[u2(S2)]

}
LP problem with infinity of params u1, u2,∆

S ,∆L and infinity of constraints
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Optimal sub/superreplication formulation: LP problem (De Marco,
Henry-Labordère, 2015)

Available instruments:

At time 0:
u1(S1): vanilla payoff maturity T1 (including cash)
u2(S2): vanilla payoff maturity T2
Cost: E1[u1(S1)] + E2[u2(S2)]

At time T1:
∆S(S1, V )(S2 − S1): delta hedge
∆L(S1, V )(L(S2/S1)− V 2): enter in ∆L(S1, V ) log-contracts
Cost: 0

Subreplicating portfolio Usub: for all (s1, s2, v) ∈ (R∗+)2 × R+

u1(s1) + u2(s2) + ∆S(s1, v)(s2 − s1) + ∆L(s1, v)

(
L

(
s2
s1

)
− v2

)
≤ v

Optimal model-free no-arbitrage lower bound:

Psub ≡ supUsub

{
E1[u1(S1)] + E2[u2(S2)]

}
LP problem with infinity of params u1, u2,∆

S ,∆L and infinity of constraints
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Optimal sub/superreplication formulation: LP problem (De Marco,
Henry-Labordère, 2015)

Available instruments:

At time 0:
u1(S1): vanilla payoff maturity T1 (including cash)
u2(S2): vanilla payoff maturity T2
Cost: E1[u1(S1)] + E2[u2(S2)]

At time T1:
∆S(S1, V )(S2 − S1): delta hedge
∆L(S1, V )(L(S2/S1)− V 2): enter in ∆L(S1, V ) log-contracts
Cost: 0

Subreplicating portfolio Usub: for all (s1, s2, v) ∈ (R∗+)2 × R+

u1(s1) + u2(s2) + ∆S(s1, v)(s2 − s1) + ∆L(s1, v)

(
L

(
s2
s1

)
− v2

)
≤ v

Optimal model-free no-arbitrage lower bound:

Psub ≡ supUsub

{
E1[u1(S1)] + E2[u2(S2)]

}
LP problem with infinity of params u1, u2,∆

S ,∆L and infinity of constraints
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Classical sub/superreplication of VIX futures

∆S ≡ 0, ∆L(s1, v) = −a, u1(s1) = −aL(s1) + b, u2(s2) = aL(s2)

u1(s1) + u2(s2) + ∆S(s1, v)(s2 − s1) + ∆L(s1, v)

(
L

(
s2
s1

)
− v2

)
= −aL(s1) + b+ aL(s2)− a

(
L

(
s2
s1

)
− v2

)
= av2 + b

does not depend on s1, s2: perfect replication of v2

Classical (nonoptimal) superreplication: Minimize E1[u1(S1)] +E2[u2(S2)] over
all a, b such that av2 + b ≥ v =⇒

a∗ =
1

2σ12
, b∗ =

σ12

2
, E1[u1(S1)] + E2[u2(S2)] = σ12

Classical (nonoptimal) subreplication: Maximize E1[u1(S1)] + E2[u2(S2)] over
all a, b such that av2 + b ≤ v =⇒

a∗ = 0, b∗ = 0, E1[u1(S1)] + E2[u2(S2)] = 0
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LP solver: numerical results

SABR risk-neutral densities
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LP solver: numerical results for subreplication
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LP solver: numerical results for subreplication
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LP solver: numerical results for subreplication
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LP solver: numerical results for subreplication
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LP solver: numerical results for subreplication
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LP solver: numerical results for subreplication
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LP solver: numerical results for subreplication

Lower bound = 7.2%� 0 = classical lower bound

Upper bound = 22.8% = σ12 = classical upper bound

Practical problem: How do we try all u1(s1), u2(s2), ∆S(s1, v),
∆L(s1, v)? How do we check the sub/superreplicating constraints
everywhere?

=⇒ Build a richer family of functionally generated sub/superreplicating
portfolios, guaranteed to satisfy the constraints everywhere
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2. A new family of
functionally generated

sub/superreplicating portfolios
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A new family of functionally generated sub/superreplicating portfolios

For a convex function ϕ : R∗+ × R→ R and s1 > 0, we denote by

ϕ∗super(s1) ≡ sup
v≥0

{
v − ϕ(s1, L(s1) + v2)

}
the smallest function u1 : R∗+ → R ∪ {+∞} such that

∀s1 > 0, ∀v ≥ 0, u1(s1) + ϕ(s1, L(s1) + v2) ≥ v

Proposition

Let ϕ : R∗+ × R→ R be a convex function. The following portfolio
superreplicates the VIX:

u1(s1) = ϕ∗super(s1), u2(s2) = ϕ(s2, L(s2))

∆S(s1, v) = −∂1,rϕ(s1, L(s1) + v2), ∆L(s1, v) = −∂2,rϕ(s1, L(s1) + v2)

Julien Guyon Bloomberg L.P.
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A new family of functionally generated sub/superreplicating portfolios

Proof.

Since ϕ is convex, ϕ is above tangent hyperplane:

ϕ(s2, L(s2))− ϕ(s1, L(s1) + v2) ≥

∂1,rϕ(s1, L(s1) + v2)(s2 − s1) + ∂2,rϕ(s1, L(s1) + v2)(L(s2)− L(s1)− v2)

This yields

u1(s1) + u2(s2) + ∆S(s1, v)(s2 − s1) + ∆L(s1, v)

(
L

(
s2
s1

)
− v2

)
= u1(s1) + ϕ(s2, L(s2))− ∂1,rϕ(s1, L(s1) + v2)(s2 − s1)

−∂2,rϕ(s1, L(s1) + v2)(L(s2)− L(s1)− v2)

≥ u1(s1) + ϕ(s1, L(s1) + v2) ≥ v
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A new family of functionally generated sub/superreplicating portfolios

ϕ(s2, L(s2))− ϕ(s1, L(s1) + v2) ≥

∂1,rϕ(s1, L(s1) + v2)(s2 − s1) + ∂2,rϕ(s1, L(s1) + v2)(L(s2)− L(s1)− v2)

Interpretation at T1:

Price of S2 at T1 is S1

Price of L(S2) at T1 is L(S1) + V 2

=⇒ R.h.s. is costless

=⇒ Price of u2(S2) ≡ ϕ(S2, L(S2)) at T1 is ≥ ϕ(S1, L(S1) + V 2)
(←→ Jensen’s inequality)

We can exactly superreplicate u1(S1) + ϕ(S1, L(S1) + V 2) at T1

Choose u1 and ϕ such that this is always ≥ V
Julien Guyon Bloomberg L.P.
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A new family of functionally generated sub/superreplicating portfolios

Classical superreplication portfolio:

ϕ(x, y) = ay

u2(s2) = aL(s2), ∆S(s1, v) = 0, and ∆L(s1, v) = −a
For ϕ∗super(s1) to be finite, one must choose a > 0. Then

ϕ∗super(s1) =
1

4a
− aL(s1) ≡ u1(s1)

E1 [u1(S1)] + E2[u2(S2)] = 1
4a
− aE1 [L(S1)] + aE2[L(S2)] = 1

4a
+ aσ2

12

Minimizing over the parameter a gives a = 1
2σ12

and we recover the
classical superreplication portfolio

The proposition tells us that, in order to build analytical
superreplicating portfolios, instead of considering a payoff u2(s2)
which is linear in L(s2), one can more generally consider convex
functions of (s2, L(s2))
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A new family of functionally generated sub/superreplicating portfolios

For a concave function ϕ : R∗+ × R→ R and s1 > 0, we denote by

ϕ∗sub(s1) ≡ inf
v≥0

{
v − ϕ(s1, L(s1) + v2)

}
the largest function u1 : R∗+ → R ∪ {−∞} such that

∀s1 > 0, ∀v ≥ 0, u1(s1) + ϕ(s1, L(s1) + v2) ≤ v

Proposition

Let ϕ : R∗+ × R→ R be a concave function. The following portfolio
subreplicates the VIX:

u1(s1) = ϕ∗sub(s1), u2(s2) = ϕ(s2, L(s2))

∆S(s1, v) = −∂1,rϕ(s1, L(s1) + v2), ∆L(s1, v) = −∂2,rϕ(s1, L(s1) + v2)
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A new family of functionally generated sub/superreplicating portfolios
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A new family of functionally generated sub/superreplicating portfolios

Portfolio family parameterized by convex/concave function
ϕ : R∗+ × R→ R
=⇒ Optimize over convex/concave functions in dimension 2

Problem: How to test all convex/concave functions in dimension 2?

Dimension 1: Extreme rays of the convex cone of convex functions =
call/put payoffs

Johansen (1972): In dimension d ≥ 2, the extreme rays are dense in the
cone

Scarsini [Multivariate convex orderings, dependence, and stochastic
equality, J. Appl. Prob., 35:93–103, 1998]: “No simple characterization
for the convex ordering in dimension d ≥ 2 can be hoped for.”

Workaround: Consider only the functions of the type ϕ(x, y) = ψ(ax+ y)
with ψ : R→ R convex/concave

Optimize on a and ψ: decompose ψ on call/put payoffs, and optimize on
weights

Julien Guyon Bloomberg L.P.
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Examples of subreplicating portfolios

ϕ(x, y) = ψ(ax+ y), ψ concave polygonal line (piecewise affine)
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Examples of subreplicating portfolios

ϕ(x, y) = ψ(ax+ y), ψ cut square root
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Numerical results

SABR risk-neutral densities
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Numerical results

ϕ(x, y) = ψ(ax+ y), ψ concave polygonal line (piecewise affine)
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Numerical results

ϕ(x, y) = cut square root
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Numerical results

SABR model
T1 = 2 months

Market smiles as of
May 5, 2016; T1 = 10 days

Lower
bound

Classical lower bound 0% 0%
ψ polygonal (N = 1 kink) 4.6% 4.4%
ψ polygonal (N = 10 kinks) 5.2% 7.2%

ψ cut square root 6.0% 7.8%
Lower bound from LP solver 7.2% 8.4%

Classical upper bound 22.8% 16.7%

Upper bound from LP solver 22.8% 16.7%

Numerically: upper bound = σ12

Theoretically: Can we characterize the market smiles µ1 and µ2 for which
optimal upper bound = σ12?
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3. When are the classical bounds
optimal?
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Monge-Kantorovich duality

M(µ1, µ2) = the martingale measures µ on (R∗+)2 with marginals µ1 and
µ2:

S1 ∼ µ1, S2 ∼ µ2, Eµ [S2|S1] = S1

Price at T1 of the log-contract in Model µ ∈M(µ1, µ2):

Λµ(S1) ≡ Eµ
[
L

(
S2

S1

)∣∣∣∣S1

]
Corresponds to the situation where the VIX is a function of S1

For all µ ∈M(µ1, µ2),

Λµ(S1) ≥ 0

E1[Λµ(S1)] = σ2
12
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Monge-Kantorovich duality

M(µ1, µ2) naturally arises in the dual formulation of the classical
martingale optimal transportation problem (no VIX):

(u1, u2,∆) ∈ Usuper ⇐⇒ u1(s1) + u2(s2) + ∆(s1)(s2 − s1) ≥ g(s1, s2)

Psuper ≡ inf
Usuper

{
E1[u1(S1)] + E2[u2(S2)]

}
Dsuper ≡ sup

µ∈M(µ1,µ2)

Eµ[g(S1, S2)]

MK duality: Dsuper ≤ Psuper (weak), Dsuper = Psuper (strong)

With the VIX:

(u1, u2,∆
S ,∆L) ∈ Usuper ⇐⇒ u1(s1) + u2(s2) + ∆S(s1, v)(s2 − s1)

+∆L(s1, v)(L(s2/s1)− v2) ≥ v
Psuper ≡ inf

Usuper

{
E1[u1(S1)] + E2[u2(S2)]

}
Dsuper ≡ sup

µ∈MV (µ1,µ2)

Eµ[V ]
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Monge-Kantorovich duality

MV (µ1, µ2) = the set of all the probability distributions µ on (R∗+)2 ×R+

such that

S1 ∼ µ1, S2 ∼ µ2, Eµ [S2|S1, V ] = S1, Eµ
[
L

(
S2

S1

)∣∣∣∣S1, V

]
= V 2

Corresponds to the general situation where the VIX V is not necessarily
a function of S1

When we project V 2 onto functions of S1, we must find back Λµ(S1):

Eµ[V 2|S1] = Λµ(S1)

(extending the definition of Λµ(S1) to µ ∈MV (µ1, µ2))

Note that for all µ ∈MV (µ1, µ2),

Eµ[V 2] = σ2
12
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Absence of a duality gap

Superreplication of f(s1, s2, v), e.g., f(s1, s2, v) = v:

Theorem

Let f : R∗+ × R∗+ × R+ → R be upper semicontinuous and satisfy

|f(s1, s2, v)| ≤ C
(
1 + s1 + s2 + |L(s1)|+ |L(s2)|+ v2

)
for some constant C > 0. Then

Dsuper ≡ sup
µ∈MV (µ1,µ2)

Eµ[f ] = inf
Usuper

{
E1[u1(S1)] + E2[u2(S2)]

}
≡ Psuper.

Moreover, Dsuper 6= −∞ if and only if MV (µ1, µ2) 6= ∅, and in that case the
supremum is attained.

Of course a similar results holds for the subreplication of f(s1, s2, v)
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Local volatility property of the superreplication price

Superreplication of VIX futures: A dual optimal measure can be chosen of the
“local volatility type”, i.e., s.t. the VIX is a function of S1:

Proposition

Dsuper ≡ sup
µ∈MV (µ1,µ2)

Eµ[V ] = sup
µ∈M(µ1,µ2)

E1
[√

Λµ(S1)
]
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What do we mean by arbitrage-free?

S-arbitrage: when only the S&P 500 and vanilla options on it are available for
trading:

U0
S = the functions (u1, u2,∆) s.t.

u1(s1) + u2(s2) + ∆(s1)(s2 − s1) ≥ 0

An arbitrage = an element of U0
S such that E1[u1(S1)] + E2[u2(S2)] < 0

(S, V )-arbitrage: when it is also possible to trade the log-contract at T1:

U0
S,V = the functions (u1, u2,∆

S ,∆L) s.t.

u1(s1) + u2(s2) + ∆S(s1, v)(s2 − s1) + ∆L(s1, v)

(
L

(
s2
s1

)
− v2

)
≥ 0

An arbitrage = an element of U0
S,V such that E1[u1(S1)] + E2[u2(S2)] < 0
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What do we mean by arbitrage-free?

Clearly, absence of (S, V )-arbitrage implies absence of S-arbitrage. Actually,
both notions are equivalent:

Theorem

The following assertions are equivalent:

(i) The market is free of S-arbitrage,

(ii) The market is free of (S, V )-arbitrage,

(iii) M(µ1, µ2) 6= ∅,
(iv) MV (µ1, µ2) 6= ∅,
(v) µ1 and µ2 are in convex order, i.e., for any convex function f : R∗+ → R,

E1[f(S1)] ≤ E2[f(S2)].

Not surprisingly, the possibility of trading the FSLC at T1 does not add
any restriction in our model-free setting

However, our proof needs the difficult direction of Strassen’s theorem
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When is the classical upper bound optimal?

Denote

`1 ≡ E1[L(S1)], `2 ≡ E2[L(S2)]; σ2
12 = `2 − `1

Let M̄(µ1, µ2) be the subset of M(µ1, µ2) made of the martingale measures µ
such that Λµ(S1) is a.s. constant. In this case, Λµ(S1) = σ2

12 a.s.

Theorem

The following assertions are equivalent:

(i) Psuper = σ12,

(ii) there exists µ ∈MV (µ1, µ2) such that V = σ12 µ-a.s.,

(iii) M̄(µ1, µ2) 6= ∅,
(iv) Lawµ1(S1, L(S1)− `1) and Lawµ2(S2, L(S2)− `2) are in convex order,

(iv’) Lawµ1(S1, L(S1) + σ2
12) and Lawµ2(S2, L(S2)) are in convex order.
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A condition under which the classical upper bound is not optimal

Necessary and sufficient conditions in the previous theorem are not
straightforward to check given the marginals: no simple family of convex
test functions exists in two or more dimensions
=⇒ We are interested in simpler criteria, at the expense of not being
sharp. The following is a condition that involves only call and put prices:

Proposition

Denote by Ci(K) and Pi(K) the prices at time 0 of the call and put options
with maturity Ti and strike K. Let

Ψ1(K) ≡ Φ1

(
K +

1

2
σ2
12τ

)
, Ψ2(K) ≡ Φ2(K),

where

Φi(K) =

{
Ci(e

K)
S0

−
∫∞
eK

Ci(k)

k2
dk if K > lnS0

lnS0 −K + Pi(e
K)

S0
−
∫ S0

eK
Pi(k)

k2
dk −

∫∞
S0

Ci(k)

k2
dk otherwise.

If there exists K ∈ R such that Ψ1(K) > Ψ2(K), then Psuper < σ12.

Proof: Take f(s, L(s)− `) = g(L(s)− `) and apply Carr-Madan’s formulaJulien Guyon Bloomberg L.P.
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When is the classical lower bound optimal?

The classical lower bound is never sharp in practice:

Theorem

Psub = 0 if and only if µ1 = µ2.

Better: when µ1 6= µ2, we can construct an explicit, functionally generated
subreplicating portfolio that has strictly positive price:

Proposition

Let µ1 6= µ2 be in convex order. Then there exists a functionally generated
subreplicating portfolio (u1, u2,∆

S ,∆L) ∈ Usub with strictly positive price.
It is generated by the concave function ψ(z) ≡ −γ(z + b)− and a constant
a > 0, where γ > 0 and b ∈ R. The values of the constants depend on µ1, µ2

and can be found explicitly.
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4. Specific families of smiles µ1, µ2
and corresponding portfolios
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Examples where Psuper < σ12

Optimal upper bound Psuper < classical upper bound σ12:

when µ2 = a Bernoulli distribution:
except for very special µ1

when µ2 has compact support:
if µ1 puts weight close to the edges of supp(µ2)

when µ2 = a three-point distribution:
if and only if a very graphical condition on supp(µ1) holds
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The case where µ2 is a Bernoulli distribution

µ2 = pδsu2 +(1−p)δsd2 , 0 < sd2 < S0 < su2 , p =
S0 − sd2
su2 − sd2

∈ (0, 1) (5.1)

In the absence of arbitrage, the sets M(µ1, µ2) and MV (µ1, µ2) both
have a unique element (complete model)

=⇒ Dsuper = Dsub and this number can be computed explicitly as the
expectation under the unique risk-neutral measure

Unique martingale transition probabilities:

πu(s1) ≡ s1 − sd2
su2 − sd2

, πd(s1) ≡ su2 − s1
su2 − sd2

= 1− πu(s1)

Risk-neutral price of the FSLC in the one-step binomial model:

Λb(s1) ≡ πu(s1)L

(
su2
s1

)
+ πd(s1)L

(
sd2
s1

)
, s1 > 0

Its square root: λb(s1) =
√

Λb(s1), s1 ∈ [sd2, s
u
2 ]
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The case where µ2 is a Bernoulli distribution
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Figure : Λb and its square-root, λb
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The case where µ2 is a Bernoulli distribution

Theorem

Let µ2 be the Bernoulli distribution (5.1). Then, there is no arbitrage, or
equivalently M(µ1, µ2) 6= ∅, if and only if supp(µ1) ⊂ [sd2, s

u
2 ]. In this case,

M(µ1, µ2) has a unique element β, given by

β(ds1, ds2) = µ1(ds1)
(
πu(s1)δsu2 (ds2) + πd(s1)δsd2

(ds2)
)

and MV (µ1, µ2) has a unique element βV , given by

βV (ds1, ds2, dv) = β(ds1, ds2)δλb(s1)(dv).

In particular, V = λb(S1) βV -a.s. Moreover,

(i) if µ1 is the Bernoulli distribution that takes values in {λ−1
b,−(σ), λ−1

b,+(σ)}
for some σ ∈ [0, λb(S0)], then β ∈ M̄(µ1, µ2) and Psuper = σ12,

(ii) if µ1 is a different distribution, then M̄(µ1, µ2) = ∅ and
Psuper = E1[λb(S1)] < σ12.
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The case where µ2 is a Bernoulli distribution
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The case where µ2 is a Bernoulli distribution

Back to the primal problem: Find ε-optimal portfolio u1, u2, ∆S , ∆L

Such a portfolio can be chosen of the functionally generated form
ϕ(x, y) = ψ(ax+ y) with ψ(z) ≡ 1

2ε
(z + b)+:

u1(s1) =

{
λb(s1) if s1 ∈ [sd1,ε, s

u
1,ε]

ε if s1 /∈ [sd1,ε, s
u
1,ε],

∆S(s1, v) =
∆b

2ε
1v≥λb(s1)

,

u2(s2) =

{
0 if s2 ∈ [sd2, s

u
2 ]

− 1
2ε

Λb(s2) if s2 /∈ [sd2, s
u
2 ],

∆L(s1, v) = −
1

2ε
1v≥λb(s1)
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The case where µ2 has compact support in R∗+

sd2 ≡ min supp(µ2) > 0, su2 ≡ max supp(µ2) < +∞ (5.2)

We assume that the market is arbitrage-free, i.e., that µ1 and µ2 are in
convex order

=⇒ supp(µ1) ⊂ [sd2, s
u
2 ]; in particular, sd2 ≤ sd1 ≤ su1 ≤ su2 , where

sd1 ≡ min supp(µ1), su1 ≡ max supp(µ1)

Sufficient conditions on the market smiles µ1 and µ2 under which
Psuper < σ12? 3 strategies:

Find a superreplicating portfolio whose price is strictly smaller than σ12; or

Show that Lawµ1(S1, L(S1)− `1) and Lawµ2(S2, L(S2)− `2) are not in
convex order; or

Verify that M̄(µ1, µ2) = ∅.
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The case where µ2 has compact support in R∗+

Proposition

Assume (5.2) and absence of arbitrage. Each of the following implies
Psuper < σ12:

(i) E1 [λb(S1)] < σ12,

(ii) L(sd1)− `1 > L(sd2)− `2, which holds in particular if sd1 = sd2 and µ1 6= µ2,

(iii) µ1(A) > 0 for A ≡ (sd2, λ
−1
b,−(σ12)) ∪ (λ−1

b,+(σ12), su2 ).
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0.6
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λb (s)
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b,− (σ) λ−1

b,+(σ)

Figure : {λ−1
b,−(σ), λ−1

b,+(σ)}
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The case where µ2 is a three-point distribution
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Figure : πi(S1) represents the conditional probability that S2 = yi given S1. It must
a.s. lie within the triangle. The three curves are the graphs of π∗

1,σ2
12

for three values

of σ12: 0 < σ− < σ+
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5. Conclusion
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Conclusion: main takeaways

A longstanding, important question in volatility markets:

What information on the dynamics of the surface of implied vol is
contained in the surface itself?

How is the surface dynamics constrained by the state of the surface itself?

What information on the vol of vol is contained in the surface of implied
vol?

What information on the price of volatility derivatives is contained in the
surface of implied vol?
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Conclusion: main takeaways

Our contributions:

Given two slices of the implied vol surface: the smiles at T1 and T2

Volatility derivative: VIX future. Derivative on options-implied volatility

The price of the VIX future (∼ stdev of VIXT1) is constrained:
Well known: price cannot be too large (classical upper bound, corresponds
to zero stdev of VIXT1

)
New: price cannot be too small, i.e., stdev of VIXT1 cannot be too large

0% ≤ price ≤ 16% −→ 8% ≤ price ≤ 16%

New: sharp bounds and the corresponding portfolios, using
LP solver or
a new family of functionally generated sub/superreplicating portfolios

New: in typical markets, classical upper bound is sharp: stdev of VIXT1

can be zero
New: explicit examples where the classical upper bound is not sharp and
the corresponding portfolios
New: absence of a duality gap =⇒ optimal bounds can be computed in the
dual manner
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