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Outline

MLMC and randomised MLMC

Value-at-Risk and other risk measures

prior research on VaR
◮ Gordy & Juneja (2010)
◮ Broadie, Du & Moallemi (2011)

portfolio sub-sampling

estimating inner conditional expectation

adding in Euler-Maruyama or Milstein timestepping
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Multilevel Monte Carlo

MLMC is based on the telescoping sum

E[PL] = E[P0] +
L

∑

ℓ=1

E[Pℓ−Pℓ−1] ≡
L

∑

ℓ=0

E[∆Pℓ]

where Pℓ represents an approximation of some output P on level ℓ, and
∆Pℓ ≡ Pℓ−Pℓ−1 with P−1≡0.

If the weak convergence is

E[Pℓ−P ] = O(2−α ℓ),

and Yℓ is an unbiased estimator for E[Pℓ−Pℓ−1], with variance

V[Yℓ] = O(2−β ℓ),

and expected cost
E[Cℓ] = O(2γ ℓ), . . .
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Multilevel Monte Carlo

. . . then the finest level L and the number of samples Nℓ on each level
can be chosen to achieve an RMS error of ε at an expected cost

C =























O
(

ε−2
)

, β > γ,

O
(

ε−2(log ε)2
)

, β = γ,

O
(

ε−2−(γ−β)/α
)

, 0 < β < γ.

I always try to get β > γ, so the main cost comes from the coarsest levels
– use of QMC can then give substantial additional benefits.

With β > γ, can also randomise levels to eliminate bias
(Rhee & Glynn, 2015).
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Randomised Multilevel Monte Carlo

Starting from

E[P ] =

∞
∑

ℓ=0

E[∆Pℓ] =

∞
∑

ℓ=0

pℓ E[∆Pℓ/pℓ],

Rhee & Glynn’s unbiased single-term estimator is

Y = ∆Pℓ′ / pℓ′ ,

where ℓ′ is a random integer which takes value ℓ with probability pℓ.

β > γ is required to simultaneously obtain finite variance and finite
expected cost using

pℓ ∝ 2−(β+γ)ℓ/2.

The complexity is then O(ε−2).
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Value-at-Risk

Financial institutions (banks, pension companies, insurance companies)
hold portfolios with a variety of financial assets:

cash

bonds

stocks

options

and also debts / obligations:

pension payments

insurance payments
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Value-at-Risk

Collectively, the portfolio value can be expressed as a sum of risk-neutral
expectations of discounted payoffs/cash-flows fp:

V =
P
∑

p=1

E[fp]

in which the individual expectations are obtained in a variety of ways:

actual value (e.g. cash and stocks)

analytically (e.g. Black-Scholes option prices)

quasi-analytically (highly efficient FFT methods)

simple Monte Carlo

complex Monte Carlo with time-stepping approximation of SDEs

finite difference approximation of PDE
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Value-at-Risk

The institutions, and the regulators, are concerned about the risk of
a very large loss in a short time.

Given a risk horizon τ (1 week for banks, 1 year for pension / insurance
companies?) with a given distribution for risk factors Rτ over that interval,
the simplest question is

What is the probability of the portfolio loss L exceeding Lmax?

This means estimating P[L>Lmax ] ≡ E
[

1(L>Lmax)
]

where

L(Rτ ) =

P
∑

p=1

Lp(Rτ ) =

P
∑

p=1

E[fp]−E[fp|Rτ ]

This is therefore a nested simulation problem, and the indicator function
makes it even harder.
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Value-at-Risk

The true VaR Lα is defined implicitly by

P[L>Lα] = α

for some specified small α.

This involves either a root-finding process to determine Lα, or ordering
multiple samples of L to find the appropriate quantile.

Another important risk measure is Conditional Value-at-Risk (CVaR),
also known as Expected Shortfall,

E

[

L | L>Lα

]

.
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Value-at-Risk

What makes it expensive? Where is the potential for MLMC?

large number of financial products in the portfolio (P)

often needs lots of Monte Carlo samples for inner conditional
expectation (M)

sometimes needs lots of timesteps for SDE approximation (T )

P , M and T all offer possibilities for MLMC treatment
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Prior research on VaR

Gordy & Juneja (2010) considered

P [L>Lmax ] ≡ E

[

1 (L>Lmax)
]

using N outer samples for Rτ , and M inner samples to estimate L(Rτ ).

The variance for the estimator for L(Rτ ) is O(M−1), and Gordy & Juneja
prove this produces a bias in the outer estimate of the same order.

Hence, for ε RMS accuracy require

M = O(ε−1)

N = O(ε−2)

and so the complexity is O(M N P) = O(ε−3P) since each inner sample
has O(P) cost.
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Prior research on VaR

They also considered what happens as the number of products P → ∞.

For this, they introduced a weighting 1/P for each product, so
“total loss” is now “average loss”.

In this case, the variance for the estimator for L(Rτ ) is O(M−1P−1),
if using independent sampling for each product.

Hence, for ε RMS accuracy require

M = max(1,O(ε−1P−1))

N = O(ε−2)

and so the complexity is O(M N P) = O(max(ε−2P , ε−3)).
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Prior research on VaR

Their analysis can be generalised if we need to approximate an SDE:
if the inner conditional expectation estimate has bias µ and variance σ2,
then overall the bias in the outer expectation is

O(µ+ σ2).

Interesting – standard Mean Square Error analysis for SDE approximations
without nested simulation gives

MSE = µ2 + σ2

and we usually balance these two terms so that µ ∼ σ ∼ ε.

However, this nested simulation application needs µ ∼ σ2 ∼ ε
so µ ≪ σ – ideally we’d like it to be unbiased.
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Prior research on VaR

Broadie, Du & Moallemi (2011) improved on Gordy & Juneja by noting
that we don’t need many samples to determine whether L>Lmax unless
L−Lmax is small.

Heuristic analysis: when using M inner samples, if

σ2(Rτ ) = V[∆f |Rτ ], d(Rτ ) = |L−Lmax |

where ∆f is a single sample of the conditional loss, then usual confidence
interval is ±3σ/

√
M so need roughly

M = 9σ2(Rτ )/d
2(Rτ )

inner samples to be sure whether or not L>Lmax .
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Prior research on VaR

Remembering σ2 ∼ P−1 in the large P asymptotic analysis, if we use

M = ⌈ min
(

c ε−1P−1, 9σ2(Rτ )/d
2(Rτ )

)

⌉

then the cross-over point is at d = O(ε1/2) and the average number of
inner samples is

M = max(1,O(ε−1/2P−1)),

reducing the overall complexity to O(M N P) = O(max(ε−2P , ε−5/2)).

This is better, but still not the O(ε−2) that we aim for.

Also, the issue of timestepping approximation hasn’t been addressed yet.
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Wenhui Gou’s MSc dissertation

addressed large P issue

considered simple application with Black-Scholes formula for
inner conditional expectations

approximated distribution of loss using Maximum Entropy
reconstruction technique based on moments of loss φ(L)

developed control variate based on “delta-gamma” quadratic
approximation
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Wenhui Gou’s MSc dissertation

Key idea: conditional on Rτ , the total loss is

P
∑

p=1

Lp = P E[Lp]

where p is uniformly distributed in {1, 2, . . . ,P} in the r.h.s. expectation

Hence, it can be approximated by

P
∑

p=1

Lp ≈ P

M

M
∑

m=1

Lpm

with M i.i.d. indices pm.
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Wenhui Gou’s MSc dissertation

Can then use Mℓ = 2ℓ samples on level ℓ, with an antithetic estimator.

This means using an average over Mℓ values pm for “fine” level, and
splitting these into two sets of Mℓ−1 values for two “coarse” estimates.

MLMC estimator for ∆φ(L) on level ℓ is then

Yℓ = φ(L(f ))− 1
2

(

φ(L(c,a)) + φ(L(c,b))
)

.

Analysis in G (2015) shows this results in

bias ∼ 2−ℓ

variance Vℓ ∼ 4−ℓ

cost Cℓ ∼ 2ℓ

so α ≈ 1, β ≈ 2, γ ≈ 1 =⇒ complexity is O(ε−2), independent of P .
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Wenhui Gou’s MSc dissertation
The variance of the estimator can be improved by noting that

Lp ≡ E[fp]− E[fp|Rτ ] ≈ −∆Sτ
∂E[fp]

∂S0

when τ is small, and the overall loss is approximately

−∆Sτ

P
∑

p=1

∂E[fp]

∂S0
≡ −∆Sτ ∆

where ∆ is the overall Delta for the portfolio, which is likely to be small.
Hence,

L = −∆Sτ ∆+
P
∑

p=1

(

Lp +∆Sτ
∂E[fp]

∂S0

)

so ∆Sτ ∂E[fp]/∂S0 is used as the control variate.

(Full “delta-gamma” control variate add in next order terms.)
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New ideas

1) extend Wenhui Gou’s work to Monte Carlo estimation of conditional
expectations, and probability of exceeding Lmax :

P
∑

p=1

Lp ≈ P

M

M
∑

m=1

(

fp(Rm,Wm)− fp(Rτ ,Wm)
)

where Wm represents all of the random inputs needed for the conditional
expectation, and Rm is the extra random inputs for the time interval [0, τ ]
needed for the time 0 valuation.

This essentially combines the P and M issues into one, controlled by M.
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New ideas

2) If we use Mℓ = 4ℓ then error in inner estimate is O(M
−1/2
ℓ ) = O(2−ℓ).

There is O(2−ℓ) probability of being within O(2−ℓ) of indicator step,
producing an O(1) value for MLMC estimator.

Hence, the MLMC variance is Vℓ ∼ 2−ℓ.

Also,
bias ∼ 4−ℓ, Cℓ ∼ 4ℓ,

so α ≈ 2, β ≈ 1, γ ≈ 2 and hence the complexity is O(ε−5/2),
independent of P .
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New ideas

3) better to add in Broadie’s adaptive ideas, and use something like

Mℓ(Rτ ) = max
(

c1 2
ℓ,min

(

c2 4
ℓ, 9σ2(Rτ )/d

2(Rτ )
))

in which case we get

bias ∼ 4−ℓ, Vℓ ∼ 2−ℓ, Cℓ ∼ 2ℓ,

so α ≈ 2, β ≈ 1, γ ≈ 1 and hence the complexity is roughly O(ε−2).

4) again it is really important to use a control variate to reduce the
variance of the MLMC estimator
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New ideas

5) what about adding in time-stepping?

Originally, I thought this would be challenging, and may require
Multi-Index Monte Carlo, but now I think it may not be too tough.

For the inner conditional expectation what we want is an unbiased
unit-cost estimator.

In many cases, can use Rhee & Glynn’s unbiased single-term
estimator based on randomised MLMC – then analysis in 3) remains
valid, since each single-term sample has O(1) expected cost.

In other cases, can maybe use inner timestepping-MLMC to estimate
conditional expectation, but we need to make the bias very small
so that bias=O(variance).
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Conclusions

I think VaR may be a great new application area for MLMC

so far, banks haven’t been very interested in MLMC, perhaps
because the savings have been modest – with VaR, I think the
savings may be quite large

I think nested MLMC may be the way to handle time-stepping

there are other things I haven’t discussed:
◮ optimising for varying cost of different portfolio components
◮ VaR, CVaR and other risk measures

we should have numerical results for talk at Global Derivatives

Webpages:
http://people.maths.ox.ac.uk/gilesm/mlmc.html

http://people.maths.ox.ac.uk/gilesm/mlmc community.html
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