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The SPX volatility surface as of 15-Sep-2005
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Figure 1. The SPX volatility surface as of 15-Sep-2005 (Figure 3.2 of
The Volatility Surface).
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Term structure of at-the-money skew

@ Given one smile for a fixed expiration, little can be said about
the process generating it.

@ In contrast, the dependence of the smile on time to expiration
is intimately related to the underlying dynamics.

e In particular model estimates of the term structure of ATM
volatility skew defined as

0
P(r) = ‘8/(035(/(77')
are very sensitive to the choice of volatility dynamics in a
stochastic volatility model.

k=0
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Term structure of SPX ATM skew as of 15-Sep-2005
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Figure 2:  Term structure of ATM skew as of 15-Sep-2005, with power
law fit 7794 superimposed in red.
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Stylized facts

@ Although the levels and orientations of the volatility surfaces
change over time, their rough shape stays very much the
same.

o It's then natural to look for a time-homogeneous model.

@ The term structure of ATM volatility skew

Y(r) ~ =

T

with o € (0.3,0.5).
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Motivation for Rough Volatility |: Better fitting stochastic
volatility models

@ Conventional stochastic volatility models generate volatility
surfaces that are inconsistent with the observed volatility
surface.

e In stochastic volatility models, the ATM volatility skew is
constant for short dates and inversely proportional to T for
long dates.

o Empirically, we find that the term structure of ATM skew is
proportional to 1/ T for some 0 < o < 1/2 over a very wide
range of expirations.

@ The conventional solution is to introduce more volatility
factors, as for example in the DMR and Bergomi models.

e One could imagine the power-law decay of ATM skew to be
the result of adding (or averaging) many sub-processes, each
of which is characteristic of a trading style with a particular
time horizon.
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Bergomi Guyon

o Define the forward variance curve &:(u) = E [v,| F].
@ According to [BG12], in the context of a variance curve
model, implied volatility may be expanded as

stk T) = oulT) #5505 kv 06) @

where 7) is volatility of volatility, w = fOT o(s) ds is total
variance to expiration T, and

ng_/ dt/ [dXtdft( )] (2)

e Thus, given a stochastic model, defined in terms of an SDE,
we can easily (at least in principle) compute this smile
approximation.
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The Bergomi model

@ The n-factor Bergomi variance curve model reads:

e(u) = &o(u eXp{Z 77:/ W()—i- dr|ft}
(3)

@ The Bergomi model generates a term structure of volatility
skew t(7) that is something like

P(T) = Z /;7— {1 _lomer _;:w} .

1

e This functional form is related to the term structure of the
autocorrelation function.

e Which is in turn driven by the exponential kernel in the
exponent in (3).
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Tinkering with the Bergomi model

e Empirically, (1) ~ 77 for some «.
@ It's tempting to replace the exponential kernels in (3) with a
power-law kernel.

@ This would give a model of the form

¢e(u) = &o(u) exp {77 /Ot (td_mf)’y + drift }

which looks similar to

&t(u) = &o(u) exp {7] WtH + drift }

where W/} is fractional Brownian motion.
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Motivation for Rough Volatility Il: Power-law scaling of the
historical volatility process

@ The Oxford-Man Institute of Quantitative Finance makes
historical realized variance (RV) estimates freely available at
http://realized.oxford-man.ox.ac.uk. These estimates
are updated daily.

@ Using daily RV estimates as proxies for instantaneous variance,
we may investigate the time series properties of v; empirically.


http://realized.oxford-man.ox.ac.uk
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SPX realized variance from 2000 to 2016

SPX realized variance
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Figure 3: KRV estimates of SPX realized variance from 2000 to 2016.
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The smoothness of the volatility process

@ For g > 0, we define the gth sample moment of differences of
log-volatility at a given lag Al:

m(q,A) = (llog ot — log o+|7)
@ For example
m(2,A) = ((log 7¢4a — log Ut)2>

is just the sample variance of differences in log-volatility at the
lag A.

1(.) denotes the sample average.
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Scaling of m(q, A) with lag A

log m(q, A)

log A

Figure 4. log m(g, A) as a function of log A, SPX.



0000000000000 e00000

Scaling of (4 with g
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Figure 5:  Scaling of (4 with g.
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Monofractal scaling result

@ From the log-log plot Figure 4, we see that for each g,
m(q, A) oc A,
@ And from Figure 5 the monofractal scaling relationship

Gq=qH

with H ~ 0.13.
e Note also that our estimate of H is biased high because we
proxied instantaneous variance v; with its average over each

T .
day + [, vedt, where T is one day.
e On the other hand, the time series of realized variance is noisy
and this causes our estimate of H to be biased low.

@ A time series of H for SPX following the methodology of
[BLP16] is shown in the next figure.
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The time series of & = H — % for SPX
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Figure 10: Half year rolling-window estimates of a on the realized variance measures of the daily volatility by variogram OLS
regression (3.10) with m = 3. The pink area is the 95% confidence interval by bootstrap method with B = 999. The four
vertical dashed blue lines indicate four periods of market turmoil: Lehman Brothers filing for bankruptcy, the Flash Crash,
the first bailout during Greek debt crisis and the Brexit referendum.
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Distributions of (log o a — logo;) for various lags A
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Figure 6: Histograms of (logo;ia — logo:) for various lags A; normal
fit in red; A = 1 normal fit scaled by A% in blue.
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Estimated H for all indices

Estimating the relationship
((log oeyn — |0g0t)2> =2 A%
for all 21 indices in the Oxford-Man dataset yields:

Index H v
SPX2.rk 0.13 0.32
FTSE2.rk 0.14 0.27
N2252.rk 0.11 0.33
GDAXI2.rk 0.15 0.28
RUT2.rk 0.12 0.33
AORD2.rk 0.08 0.36
DJI2.rk 0.13 0.32
IXIC2.rk 0.13 0.30
FCHI2.rk 0.13 0.29
HSI2.rk 0.10 0.28
KS11.rk 0.12 0.28
AEX.rk 0.14 0.29
SSMl.rk 0.18 0.22
IBEX2.rk 0.13 0.28
NSEI.rk 0.11 0.32
MXX.rk 0.09 0.33
BVSP.rk 0.11 0.31
GSPTSE.rk 0.12 0.31
STOXXS50E.rk 0.12 0.34
FTSTlLrk 0.13 0.23

FTSEMIB.rk 0.13 0.30
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Universality?

e In [GJR14], we compute daily realized variance estimates over
one hour windows for DAX and Bund futures contracts,
finding similar scaling relationships.

@ We have also checked that Gold and Crude Qil futures scale
similarly.

o Although the increments (log o;1a — logo:) seem to be fatter
tailed than Gaussian.

e In [BLP16] Bennedsen et al., estimate volatility time series for
more than five thousand individual US equities, finding rough
volatility in every case.
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A natural model of realized volatility

@ Distributions of differences in the log of realized volatility are
close to Gaussian.

e This motivates us to model o, as a lognormal random variable.

@ Moreover, the scaling property of variance of RV differences
suggests the model:

logoein —logor =v <WriA - WtH> (4)

where W is fractional Brownian motion.

@ In [GJR14], we refer to a stationary version of (4) as the
RFSV (for Rough Fractional Stochastic Volatility) model.
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Fractional Brownian motion (fBm)

o Fractional Brownian motion (fBm) {W/}; t € R} is the unique
Gaussian process with mean zero and autocovariance function

1
E|WH W] =2 {1t + 1524 — e - 52}
where H € (0, 1) is called the Hurst index or parameter.
@ In particular, when H = 1/2, fBm is just Brownian motion.

o If H> 1/2, increments are positively correlated.
o If H < 1/2, increments are negatively correlated.
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Apparent fractality of the volatility time series
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Figure 7:  Volatility of SPX (above) and in the RFSV model (below).
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Remarks on the comparison

@ The qualitative features of simulated and actual graphs look
very similar.

e Persistent periods of high volatility alternate with low volatility
periods.
@ H ~ 0.1 generates very rough looking sample paths
(compared with H = 1/2 for Brownian motion).
e Hence rough volatility.
@ On closer inspection, we observe fractal-type behavior.
e The graph of volatility over a small time period looks like the
same graph over a much longer time period.
@ This feature of volatility has been investigated both
empirically and theoretically in, for example, [BMO03].
o In particular, their Multifractal Random Walk (MRW) is
related to a limiting case of the RSFV model as H — 0.
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A Hawkes model of price formation

In [EFR16], EI Euch, Fukasawa and Rosenbaum consider a
generalization of a simple model of price dynamics in terms of
Hawkes processes due to Bacry et al. ([BM14]) with the following
properties:
@ Reflecting the high degree of endogeneity of the market, the
L' norm of the kernel matrix is close to one (nearly unstable).

@ No drift in the price process imposes a relationship between
buy and sell kernels.

o Liquidity asymmetry: The average impact of a sell order is
greater than the impact of a buy order.

@ Splitting of metaorders motivates power-law decay of the
Hawkes kernels ¢(7) ~ 7=+ (empirically o ~ 0.6).



The scaling limit of the price model
They construct a sequence of such Hawkes processes suitably

rescaled in time and space that converges in law to a Rough
Heston process of the form

a5 = v dZ,
S

A tg— v AV o ve dW,
— d
v V°+r(a)/o (-9 Ta) Jo (t—s)io

with
d(Z,W); = pdt.
@ The correlation p is related to a liquidity asymmetry
parameter.

@ Rough volatility can thus be understood as relating to the

persistence of order flow and the high degree of endogeneity
of liquid markets.
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The characteristic function

Define the fractional integral and differential operators:

ef(e) = r(11—a)/0 (tf_(ss))a ds; Daf(t):%ll_“f(t).

Remarkably, in [ER16], EI Euch and Rosenbaum compute the
following expression for the characteristic function of the Rough
Heston model:

be(u) = exp{&)\ /Ot H(u, 5) ds + vo I, t)} ’

where h(u, ) solves the fractional Riccati equation

(Av)®
2

Do‘h(u,s):—%u(u+i)+)\(ip1/u—1)h(u,s)+ h?(u, s).
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Representations of fBm

There are infinitely many possible representations of fBm in terms
of Brownian motion. For example, with v = % —H,

Mandelbrot-Van Ness

w-a{f ot LG}

where the choice

o 2HT(3/2 — H)
=\ T(H+1/2)T(2=2H)

ensures that

1
E [W[’ WSH] =5 {tZH +s2H |t — s|2H}.
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Pricing under rough volatility
Once again, the data suggests the following model for volatility
under the real (or historical or physical) measure IP:
|0g Or =V WtH.

Let v = % — H. We choose the Mandelbrot-Van Ness
representation of fractional Brownian motion W as follows:

LRI = By e )

where the choice

o 2HT(3/2 - H)
=\ T(H+1/2)T(2=2H)

ensures that

1
E [W[’ WSH] =3 {t2” + 52— e — 5P
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Pricing under rough volatility

Then

log v, — log v;
v p [ 1 1 b
ol [ a2+ [ et ) )
= 2v Cy [Mi(u) + Z(u)] .

o Note that EF [M,(u)| F¢] = 0 and Z;(u) is F;-measurable.

@ To price options, it would seem that we would need to know
Ft, the entire history of the Brownian motion W; for s < t!
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Pricing under P

Let
(u—s)

WE (u) \/ﬁ/dWP

With 1= 2v Cy/v/2 H we have 2 Cy My(u) = n WE (u) so
denoting the stochastic exponential by £(-), we may write

vy = vtexp{nl/T/gP(u)—l—b/CHZt(u)}

= E” [w|F] & (n W (). (6)

@ The conditional distribution of v, depends on F; only through
the variance forecasts E¥ [v,| 7],

@ To price options, one does not need to know F;, the entire
history of the Brownian motion WY for s < t.
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Pricing under Q@

Our model under IP reads:
v =EF [vo| ] € (n WE (). (7)
Consider some general change of measure
dWF = dW® + )\, ds,

where {\s : s > t} has a natural interpretation as the price of
volatility risk. We may then rewrite (7) as

v, = EY [vu\}"t]S(nWQ( ))exp{nr/ —sp ds}.

@ Although the conditional distribution of v, under IP is
lognormal, it will not be lognormal in general under Q).
o The upward sloping smile in VIX options means A cannot be
deterministic in this picture.



The rough Bergomi (rBergomi) model

Let's nevertheless consider the simplest change of measure
dWF = dWR 4 A(s) ds,

where A(s) is a deterministic function of s. Then from (32), we

would have
vy = EP[vu\ft]S(nWtQ(u)) exp{n\/ﬁ/tuw_l‘s),yk(s)ds}
= &(u)€ (nW (w) (8)

where the forward variances &;(u) = E® [v,| F¢] are (at least in
principle) tradable and observed in the market.

@ &t(u) is the product of two terms:

o EF [v,| F:] which depends on the historical path {W;,s < t}
of the Brownian motion
o a term which depends on the price of risk A(s).
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Features of the rough Bergomi model

@ The rBergomi model is a non-Markovian generalization of the
Bergomi model:

E [vu| Ft] # E[vy|vt].

@ The rBergomi model is Markovian in the (infinite-dimensional)
state vector E® [v,| F;] = &(u).

@ We have achieved our aim of replacing the exponential kernels
in the Bergomi model (3) with a power-law kernel.
o We may therefore expect that the rBergomi model will
generate a realistic term structure of ATM volatility skew.
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The stock price process

@ The observed anticorrelation between price moves and
volatility moves may be modeled naturally by anticorrelating
the Brownian motion W that drives the volatility process with
the Brownian motion driving the price process.

@ Thus
e _ i dz,
St
with
dZy = pdW; 4+ /1 — p2 dW;-
where p is the correlation between volatility moves and price
moves.
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Hybrid simulation of BSS processes

o In [BFGL6], we simulate the rBergomi model by generating
paths of W and Z with the correct joint marginals using
Cholesky decomposition.

e This is very slow!

@ The rBergomi variance process is a special case of a Brownian
Semistationary (BSS) process.

e In [BLP15], Bennedsen et al. show how to simulate such
processes more efficiently.

o Their hybrid BSS scheme is much more efficient than the exact
simulation described above.

e However, it is still not fast enough to enable efficient
calibration of the Rough Bergomi model to the volatility
surface.
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Guessing rBergomi model parameters

@ The rBergomi model has only three parameters: H, n and p.
@ These parameters have very direct interpretations:
o H controls the decay of ATM skew () for very short
expirations
o The product pn sets the level of the ATM skew for longer
expirations.
o Keeping pn constant but decreasing p (so as to make it more
negative) pushes the minimum of each smile towards higher
strikes.

@ So we can guess parameters in practice.
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SPX smiles in the rBergomi model

@ In Figure 9, we show how well a rBergomi model simulation
with guessed parameters fits the SPX option market as of
August 14, 2013, one trading day before the third Friday
expiration.

e Options set at the open of August 16, 2013 so only one
trading day left.

@ rBergomi parameters were: H =0.05, n = 2.3, p = —0.9.

e Only three parameters to get a very good fit to the whole SPX
volatility surface!

@ Note in particular that the extreme short-dated smile is well
reproduced by the rBergomi model.

o There is no need to add jumps!
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SPX smiles as of August 14, 2013
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Figure 8: Red and blue points represent bid and offer SPX implied
volatilities; orange smiles are from the rBergomi simulation.
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The one-month SPX smile as of August 14, 2013
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Figure 9: Red and blue points represent bid and offer SPX implied
volatilities; the orange smiles is from the rBergomi simulation.
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ATM volatilities and skews

In Figures 10 and 11, we see just how well the rBergomi model can
match empirical ATM vols and skews. Recall also that the
parameters we used are just guesses!
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Term structure of ATM vol as of August 14, 2013
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Figure 10: Blue points are empirical ATM volatilities; green points are
from the rBergomi simulation. The two match very closely, as they
should.
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Term structure of ATM skew as of August 14, 2013
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Figure 11: Blue points are empirical skews; the red line is from the
rBergomi simulation.
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The forecast formula

o In the RFSV model (4), log v; ~2v WH + C for some
constant C.

e [NPO00] show that WJrA is conditionally Gaussian with
conditional expectation

cos(HT)  pi11/2 wrH
[ t+A|‘7:f] - TA (t — s+ A)( )H+1/2 ds

and conditional variance
Var[W o|Fe] = c A",
where

r(3/2— H)
[(H+1/2)T(2—2H)
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The forecast formula

@ Thus, we obtain

Variance forecast formula

E¥ [Vera| Fe] = exp {EP [log(vern)| Fe] +2 cz/2A2H} (9)

where

E¥ [log vera| Fe]

_ cos(H) AHH1/2 /t log vs ds.
T oo (t— s+ A)(t — 5)H+1/2

@ [BLP16] confirm that this forecast outperforms the best
performing existing alternatives such as HAR, at least at daily
or higher timescales.
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Calibration

@ As mentioned earlier, calibration of the rBergomi model is not
easy.
@ We have investigated a number of approaches to calibration
e Asymptotic expansions
o Chebyshev interpolation
e Moment matching
@ So far, we cannot claim to have had real success with any of
these approaches.
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Calibration using Chebyshev interpolation

Christian Bayer and | tried calibrating the Rough Bergomi model
to the volatility surface as follows:

@ For a given set of 3 parameters, compute option prices using
the hybrid BSS scheme [BLP15]. Compute a suitably chosen
objective function.

@ Following a suggestion of Kathrin Glau,

o Repeat this 125 times on a 5x5x5 grid of Chebyshev knots.

o Use Chebyshev interpolation to fill in the gaps.
e Find the minimum of the objective.
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@ Despite that the hybrid scheme is very much faster than the
Cholesky exact simulation scheme used in [BFG16], this
procedure still took 2 hours running in parallel on 32 CPUs.

e The problem is that over one million paths are needed to get

Monte Carlo error down to a level that allows resolution of the
minimum of the objective function.

@ Another idea is to find some quantity, such as the variance
swap, that is exactly computable in the model, and may be
accurately estimated from market prices.
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The Alos decomposition formula

Following Elisa Alos in [Alo12], let X; = log S/ K and consider the
price process

1
dXe = oedZ, = 5 o? dt. (10)
Now let F(X¢, wt(T)) (F: for short) be some function that solves
the Black-Scholes equation.
@ Specifically,

1
—3WFt "‘ 5 (aX,X - ax) Ft — 0 (11)
@ w(T) is any approximation to the implied total variance

Ve(T)=E [ftT o2 ds’ .7-}} obtained by any method.
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We now specify w;(T) (Bergomi-Guyon style) as:

wt(T):/tT]E[aﬁ\ft] du:/tT &:(u) du.

where the &;(u) are forward variances.

@ w(T) then represents the value of the static hedge portfolio
(the log-strip) for a variance swap and is thus a tradable asset
in the terminology of Fukasawa [Fuk14].

@ For each u, &(u) is a martingale in t so we may write

;
dw(T) = —o? dt—l—/ dé(u) du =: —o? dt + dM, (12)

t

where M is a martingale.
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Applying It6's Lemma to F, taking conditional expectations,
simplifying using the Black-Scholes equation and integrating, we
obtain

Theorem (The [td Decomposition Formula of Alos)

T
E[FT’Ft] - Ft+E|:/ 8X,WFSd<X7M>S ft]
t

1 T
+§E [/ Ow,wFs d(M, M),
t

7.
(13)

y

e Note in particular that (13) is an exact decomposition.
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Notation

We adopt the following notation for the Bergomi-Guyon
autocorrelation functionals:

My = E[/tTd<X,I\/I)s

7

cmery - & [ ", m,

]—'t] . (14)

@ In the notation of [BG12], CXM(T) = C*¢ and
CMM(T) = C%.
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Conditional variance of Xt

Consider 1
Fe=X24+w(T)(1 - X))+ Z we(T)2

o F; satisfies the Black-Scholes equation and Fr = X%.

o 8X,WFt = —1 and 8W,WFt = %
@ Plugging into the Decomposition Formula (13) gives

;
E[X3|F] = Wt(T)+iwt(T)2—E[/t d{Y, M)

—i—%E [/tT d{(M, M),

= we(T) + g weTY = CEM(T) + 5 C™(T),

.

7
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Volatility stochasticity

We can rewrite this as

Ce(T) = var[X7|Fe] — we(T) = =CXM(T) + % cMM(T). (15)

@ Recall that in a stochastic volatility model, the variance of the
terminal distribution of the log-underlying is not in general
equal to the expected quadratic variation.

o In the Black-Scholes model of course (;(T) = 0.

e We term the difference (:(T) volatility stochasticity or just
stochasticity.
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Model calibration

Once again, equation (15) reads

1

1 cMM(T).

G(T) = -CGM(T) +

@ The LHS may be estimated from the volatility surface using
the spanning formula.
o ((T) is a tradable asset for each T.
o We get a matching condition for each expiry T;, i € {1,..n}.
@ The RHS may typically be computed in a given model as a
function of model parameters.
e If so, we would be able calibrate such a model directly to
tradable assets with no need for any expansion.
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((T) from the smile

Let
—k + UBS(k7 T)ﬁ

ops(k, VT 2

and following Fukasawa, denote the inverse functions by
g+(z) = dz%(z). Further define

di(k) =

o(z) = ops(g_(2), T)VT.
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In terms of the implied volatility smile, it is a well-known corollary
of Matytsin's characteristic function representation in [Mat00], that

we(T) = /dz N'(2) 0?(z) =: 5°.

Similarly, we can show that

G(T) = 1//v'(z) [0%(2) - 5% dz+§/N'(z)za3(z) iz,

4
(16)
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Example: The Heston model
Consider the Heston model
th = —)\(VtL —Q)dt—i—nﬁth

with d(W, Z)¢ = pdt.

@ As is typical in the Heston model, everything may be
computed explicitly.

e Witht=T —1t,

1— —AT
we(T) = (vt—9)++97.

@ Likewise we may compute both the LHS and RHS of

G(T) = ~CM(T) + 3 C™(T)
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We find
CXM(T) = p”{(vt—e) [1—e*AT(1+AT)]

2
+0 (e‘” —1+ Ar) }

2

cMM(T) = % { (1 —2\Te M — e‘”‘T) (ve — 0)

2o [2 (e —14ar) - (1- )} }

@ Compare with the small n Bergomi-Guyon expansion which
gives only approximate expressions for ATM level, skew and

curvature.
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The Rough Bergomi model

The rBergomi model reads

t
S: = 505(/ mdzu>
0

vy = &o(u)€ <ﬁ /Ou (udl/vz)”)

Withy:%—Handﬁ:nxﬂH. Then

C?: = \/ft(t)dzty
dée(u)y . dW;
&y — M-ty

with E[dZ, dW,] = p dt.
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CXM(T) and CMM(T) are then computed as:

CM(T)

—pﬁ/tT ds@/j&(“) eXP{ﬁ;(s_t)zH {GV (Z:E)_S::’/]}

c™M(T)

ﬁ2/tT£t /gt du[exp{ (u— t)? Gy(z:i)}—l].

where for y > 1,

1 dr
&) = /o CEG s

1 - y
= ———F—=Vy "2F (1,2—27;2—7;).
(1-7-1) o y—1

and
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A numerical experiment

@ We start with SPX options as of February 4, 2010, noting all
strikes and expirations with nonzero bid prices.

@ Starting from model with parameters chosen to more or less
fit the observed smiles, for these strikes and expirations, we
replace market option prices with model option prices and
compute implied volatilities.

@ We then check to see how consistent robust estimates of
stochasticity from these (fake) market smiles are with known
values.
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Heston stochasticity: robust estimates vs exact

Normalized &(T)
0.004 0.006
| 1

0.002

T T T T T T
0.0 0.5 1.0 1.5 2.0 25

Time to expiry T

Figure 12: Plot of 47‘.(33;) vs time to expiry. The blue line is the exact
Heston formula, the red dots are robust estimates from the Heston
implied volatility smiles using (16).
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Remarks on the experiment

@ In Figure 12, we note that some of the red points are off.

e For these expirations, there are insufficient strikes to accurately
estimate the integrals in

1

C(T) = Z//\/'(z) [02(2) — 3% dz—|—§/N’(z)za3(z) dz.

@ Despite this, Heston parameters may be accurately recovered
from the fake smiles.

@ To generate Figure 12, we used flat extrapolation of the smile
beyond available strikes, as in [Fuk12].

@ What happens if we extrapolate using SVI?
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Heston stochasticity: robust estimates vs exact

Normalized &(T)
0.004 0.006
|

0.002
|

T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5

Time to expiry T

Figure 13: Plot of C}(JZ) vs time to expiry. The blue line is the exact
Heston formula, the red and green dots are robust estimates using flat
and SVI extrapolation respectively. We note significant sensitivity to the

extrapolation method.
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rBergomi stochasticity: robust estimates vs exact

Normalized &(T)

0.005 0.010 0.015 0.020 0.025
|

Time to expiry T

Figure 14: Plot of (3/2) vs time to expiry. The blue line is the exact
computation, the red and green dots are robust estimates using flat and
SVI extrapolation respectively. We note even greater sensitivity to the
extrapolation method.
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One particular rBergomi volatility smile

15

ops(Z Nt
1.0

05

Figure 15: The fake rBergomi 22-Dec-2012 expiration smile (2.88 years)

as of 04-Feb-2010. The blue points are market strikes; the dotted line is
the model generated smile.
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rBergomi stochasticity: robust estimates vs exact again
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Figure 16: Plot of C}(JZ) vs time to expiry. The blue line is the exact
computation, the red and green dots are robust estimates using flat and
SVI extrapolation respectively. The orange points use the whole smile in

Figure 15.
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Interim conclusion

@ rBergomi stochasticity is very sensitive to the extrapolation
method in practice.
o There are insufficiently many strikes available in the market for
robust estimation of rBergomi stochasticity.
o Calibration of model parameters by matching model and
market stochasticity would then need a very (unrealistically?)
good smile extrapolation method.

@ Though matching model and market stochasticity is a nice
idea in theory, we have not yet found a smile extrapolation
method to make it work in practice.
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Plot integrands

@ We now plot the various integrands for the fake rBergomi
22-Dec-2012 expiration smile to visualize sensitivity to the

extrapolation method.
@ Recall that the variance swap is given by

52 = /dz N'(z) 02(z)
and stochasticity by

C(T) = 1//\/'(2) [0%(2) — 5% dz+§/N'(z)za3(z) dz

1 2
= -+ =k
444-33
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The variance swap integrand
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Figure 17:  Plot of N’(z) 02(z). The solid line corresponds to strikes
available in the market. 10% of the integral is sensitive to extrapolation.
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The stochasticity integrand I,

0.015

0.010

Integrand

0.005

0.000

Figure 18: Plot of N'(z) [0?(2) — 52]2. The solid line corresponds to
strikes available in the market. 28% of the integral is sensitive to
extrapolation.
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The stochasticity integrand &

Integrand
0.04 0.06

0.02
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Figure 19: Plot of N’(z) zo3(z). The solid line corresponds to strikes
available in the market. 29% of the integral is sensitive to extrapolation.
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Summary

@ We uncovered a remarkable monofractal scaling relationship in
historical volatility which now appears to be universal.

@ This leads to a natural non-Markovian stochastic volatility
model under IP.

@ The resulting volatility forecast beats existing alternatives.

@ The simplest specification of Z% gives a non-Markovian
generalization of the Bergomi model.

o The history of the Brownian motion {W;, s < t} required for
pricing is encoded in the forward variance curve, which is
observed in the market.

@ This model fits the observed volatility surface surprisingly well
with very few parameters.

o Efficient calibration of the model to the volatility surface
remains an open problem.

e Matching model and market stochasticity is still work in
progress.
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