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Overview

The aim of study:
¢ To derive an asymptotic expansion of the implied volatility.
e To prove the validity of the expansion (estimate the error).
e Examine if a model is consistent to empirical facts.
e The framework should include rough volatility models.
e Make calibration more efficient.
The plan of talk:
¢ On asymptotic methods for the implied volatility.
¢ At-the-money, short-term asymptotic expansions.
e Asymptotic skew and curvature.
e The SABR and rough Bergomi models.



Stochastic volatility models
(Q, 7, P) : a probability space with a filtration {F;;t € R}.
A log price process Z is assumed to follow (under Q)

dz; = rdt - %vtdt + VvdB:.

r € R stands for an interest rate,

v is a progressively measurable positive process with
respect to a smaller filtration {G;; t € R}, Gt C F.

The {7:}-Brownian motion B is decomposed as

dB; = Ptth + /1 - ‘O?thI,

where W is an {G;}-BM and W’ is independent of {G}.

p is a progressively measurable processes with respect to
{Gt} and taking values in (-1,1).



A typical situation for stochastic volatility models is that (W, W”)
is a two dimensional {#;}-Brownian motion and {G;} is the
filtration generated by W, that is,

Gi=NVoWs-—W,;r<s<t),
where N is the null sets of .
Example: p € (-1, 1) is constant and
vi = exp(Yy), dYy= udt+ndWH,

where W' is a fractional Brownian motion driven by W as

t
whH = ch (t-s)H12 - (=) "2dW,.

[e¢]

When H = 1/2, then the model is the log-normal SABR.

Of course, {G:} can support a higher dimensional BM or Lévy.



The Black-Scholes implied volatility

An arbitrage-free price p(K, 6) of a put option at time 0 with
strike K > 0 and maturity 6 > 0 is given by

p(K,6) = e P EC[(K — exp(Zp))~+I70]

K
_ e f Qlog x > ZolFo)dx.
0

Denote by pps(K, 6, o) the put option price with strike price K
and maturity 6 under the Black-Scholes model with volatility
parameter ¢ > 0.

Given a put option price p(K, 0), K = Fek, F = e, the implied
volatility os(k, 0) is defined through

pBS(K/ 0, O‘BS(k/ 9)) = p(K, 6)



Asymptotic analyses for stochastic volatility

1. Perturbation expansions:
* Introduce an artificial parameter € as v; = v;.

e Consider
0 9
fvfdtef vidt =: %0
0 0

which is deterministic.

e The limit model (¢ — 0) is the Black-Scholes.

e regular or singular: Yoshida’s martingale expansion works.
a) small vol-of-vol (Lewis, Bergomi-Guyon)
b) multi-scale (Fouque-Papanicolaou-Sircar-Solna)

2. Short-term (small time-to-maturity) asymptotics:
e 0.
e The limit is degenerate:

0 0
Zop =16 — %f vidt +f \/thBt = O(G) + O( \/5)
0 0

« After rescaling as 67'/2Z;, the limit model is the Bachelier.



Short-term asymptotics

1. Large deviation

Does not rescale Z°.
For the transition density py(x, y) of Z%,

—201og pa(x, y) — inf{lIhl3; (0) = x, (1) = y,¢ = vh}

Heat kernel expansion, the SABR formula, ...

2. Edgeworth expansion

Rescale 6'/2Z, to get a normal limit law.
Yoshida, Kunitomo-Takahashi (small diffusion expansions)

Medvedev-Scaillet: rescale as z= —— to expand
oss(k, 0) VO

ops(k, 0).

Have a closer look around at-the-money k = 0.

Here, we give a rigorous approach under a mild condition

(in particular, we do not rely on the Malliavin calculus).



The strategy

Stochastic expansion

U

Characteristic function expansion

U

Density expansion

U

Put option price expansion

U

Implied volatility expansion

U

Asymptotic skew and curvature

Each parts are in fact not very new...
Watanabe, Yoshida, Kunitomo and Takahashi
Rem. a different approach in F. (2017), only for the 1st order.



The framework
Recall

dZ; = rdt - %tht + WrdBt, dB; = Ptth + 4/1- ptdet’

Denote by Ep and || - ||, respectively the expectation and the LP
norm under the regular conditional probability measure given
Fo, of which the existence is assumed.

Define the forward variance curve vy(t) by
vo(t) = Eolvi] = EC[vilFo].
We impose the following technical condition:

1fgvdt 1fgv(1— 2)dt
0, " o), " TF

-1

< oo, sup
p 0€(0,1)

sup
6€(0,1)




Stochastic expansion
Let

0 0 0
Mo = f VvidBt, (Mo = f vidt, o(6) = f vo(t)du.
0 0 0

We assume the following asymptotic structure: there exists a
family of random vectors

{(Méo), Mé”, I\/léz), I\/Iés)); 0 € (0,1 )}, QS(L(I)p1) ||Mg)||,o <0
€(o,

forallp>0andi=1,2,3 suchthat 3H > 0 and Je > 0,

lim o-2H-2¢ | Mo_ _ O _gM) —g2HMP  — o,
6—0 (70(9) 1+e€
o (2)
lim o~H-2¢ || =% —1 - o"MP|  =o0.
6—0 o0(0) ite




Good to remember Eg[MZ] = Eo[(M)g] = 00(0)? = O(0).

Further, we assume that the law of Méo) is standard normal for
all 6 > 0 and the derivatives

. d . 0 ]
Wix) = o (EoMDIMD) = Xp(x)}, i=1,2,3,

@ (3)
bo(x) = <5 {EollMS PIME = xl(x)}

exist in the Schwartz space, where ¢ is the std. normal density.
Example: if d Vv; = ¢(V/v;)dW;, then by the It6-Taylor,

0 t
Mngo (\/Vo+c(x/vo)wt)+c’(\/vo)fo Wsd Ws)dB;
_ W091/2

1 ’ 1 t
x{31+c(—W°)e1/2 [ Wab, + Vo) N WdeSdBt}.
Vvo 0 Vvo 0o Jo




Characteristic function expansion |

Let Xo = (2o — 2o — r0)/00(0) and
_ g0 L pHp) L p2H @) 90(6) Hp 4(3)
Yo =My +0"M" + 02 MY — == (1 + 6"M).

Lemma: Under (2), for any « € IN U {0},

sup |EO[XgeiuXu] _ Eo[Ygei“y”]l _ 0(92H+€).

|ul<6—¢
Proof: Since |e* — 1] < |x|, we have

|Eo[XZe™X0] — Eo[Y§eMY0]| < Eo[IXS — Y1) + uEo[| Yol*IXo — Yol
< C(a, €)(1 + [uDllXo — Yoll1+e

for some constant C(a, €) > 0. Since og(0) = O(0'/?), we
obtain the result. 1



Characteristic function expansion |l
Lemma: Forany 6 € [0,(H—-¢€)/3)and any a € N U {0},

sup |Eo[Y&eMY?]

lul<6-0

_EO [eiUMéO) ((Méo))a + A(O{, u, Méo)) + B(O{, u, Méo))):l‘ _ O(Q2H+€),

where
I a—1 (0) _ _
Ao(a, u, x) = (IUX + ax )(EO[YQM/’G =x] - x),

2 —1
Bo(a,u,x) = (—U?Xa + iux®1 4 %x“‘z

Proof: This follows from the fact that
2

- X
X _ 1 _ -
e ix + 5

)Eo[ll\/lé”lleéo) = .

IxP
6
for all x € IR. 1/

<




Characteristic function expansion lll

Lemma: Define gy(x) by

Go(x) =¢(x) ~ 0"afl)(x) - 62 (x)
. 4)
_ @(xmx) - 0"a) (x) + %Hbe(x)f

where ag) and by are defined by (3). Then,
f e x¥qg(x)dx
R
= Eo [ (M) + Ae,u, M) + Ba,u, M) |-

Proof: This follows from integration by parts. "



Density expansion |
Lemma: Forany «,j € N U {0},

sup flulflE [Xge%]ldu < oo
0€(0,1)

Proof: Since the distribution of Xj is Gaussian conditionally on
Go, it admits a density pg(x) under Q(:|%). Furthermore, the
density function is in the Schwartz space S by (1). Therefore,

f|U|j|Eo[X§ei“X9]IdU=f‘fujx"‘eiuxpg(x)dx du
= f ‘ f e (x*pg(x))dx

since the Fourier transform is a map from Sto S. 1

du < o




Density expansion Il

Theorem: The law of Xy admits a density pg and for any
a € N U {0},

sup(1 + x2)*|pg(x) — ga(x)| = o(62) (5)

as 0 — 0, where qg is defined by (4).
Proof: As seen in the proof of Lemma, the density py exists in
the Schwartz space. By the Fourier identity

(14 x)*pa(x) — qo(x)]
U f V(1 +y7) Pe(y)—qe(y))dye"’“Xdu‘

=5 {f |- |du+f |-|du}.
7T \Jjui<6-0 luj>6-°



Combining the lemmas in the previous section, taking
0 € (0, min{e, (H —€)/3}), we have

Llseb

On the other hand,

LQG‘O

<0 [ IWIBl(1 + X)X )du = O(e")
ui=07°

f e (1+y?)*(po(y) — goly dy‘du o(6°).

f (1 + %) pa(y)dy| du

for any j € N by Lemma. The remainder

j|:1|26—°

is handled in the same manner. 11/

f (1 + YY" qa(y)dy| du



Put option price expansion |

Denoting by pe the density of Xy as before,

p(Fe™®z,6) o1 o0(6)C
Foo pe(x )dxe dc.

Lemma: Let go(x), 6 > 0 be a family of functions on R. If

sup(1 + x%)%po(x) = qo(x)| = o(6”)

xeR

for some a > 5/4 and g > 0, then for any zp € R,

p(FeGO _ —r@f f o0(0)C p
FOO(Q) = go(x)dxe?@¢dC + o(6F)

uniformly in z < zg.



Put option price expansion |l
Proof: By the Cauchy-Schwarz inequality,

e™"? f f lpe(x (x)|dze®O)d(
“ dx
-ré
<[ Jﬁm—(1+xz)2a-1

C
X \/f (1+ x2)2-1|pg(x) — go(x)Pdze”(?°dC

—rf+00(6)z

<me

suﬂg(1 + x2)%pg(x) = go(X)]

R

which is o(66) if a > 5/4. 1




Put option price expansion |l
Theorem: Suppose we have (5) with gy of the form

Qo(X) = ¢(X){1 - 00;6)H1(X) + x3(0)(Hs(x) — 00(6)Ha(x))6"

+ (K4H4(X) + KS(ZG)Z H6(x)) 92”},

where H is the kth Hermite polynomial :

Hi(x) = x, Ha(x) = x?—1, Hs(x) = x3-3x, Ha(x) = x*-6x2+3, ...

Then, for any zg € R,

p(Fe™%)2,0) _ &(2)e(®)2 - &(z - 0o(0))
Fe=%q4(0) ao(6)

K2
+ ¢(2) {K3H1 (2)e”( D29 L | 14Ha(2) + ?3H4(z)) 92*'} + o(6%1)

uniformly in z < zp, where k3 = x3(6).



Implied volatility expansion

Theorem: Under the same condition as before,

32 K4 — 3K2
ops( \/52, 0) =12 {1 + E26"’ + (TS — K4+ —3z 2] QZH}

2
K2 K5

O(QZH)

when H< 1/2 and

313 K4 — 32
= 2 1+—zx/ 0+ =2 — x4+ | ——2 + == | 2|6 +0(0)
K2 2 Kg 2Ko

when H = 1/2, where «» = x2(6) = 00(0)/ VO and k3 = x3(6).

Note that x2(6) = +/ the averaged forward variance.



Asymptotics for at-the-money skew and curvature
Theorem: Under the same condition as before,

dkoss(0,0) = k3(0)071/2 1 0(62H-1/2),

-3 e} 2
8§GBS(O, 0) = 2%92’44 + 13(0)0H=172 1 o(62H1).
2

Proof: Combine the previous expansions and

Q(k > 50(0)XslFo) — B(f+ (K, 0))

2 __ Ppo(k/ao(0)) 3
Teoms(k, 0) = — ) Voo(t, (K )] ons(k, 0)9kf-(k, )kt (k, 0),
where

k + \/EGBs(k, 9)

Lk 0= VOogs(k,0) 2




The rough Bergomi model
Let pt = p € (—1,1) be a constant and

dlog vi = nd W/ + deterministic drift,

where 1 > 0 is a constant and W' is a fractional Brownian
motion with the Hurst parameter H € (0, 1/2), given as

t
wH = ch (t—s)H12 = (=s)}12d W

0]

with a normalizing constant cy > 0. Since v; is log-normally
distributed, (1) holds by Jensen’s inequality. We have

t
vt_vo(t)exp{nHVZHf(t— s)-12dw;s — 172H },
0

where ny = ncy/ V2H. Note that vp(t) is rough.



The Hermite polynomials

Let Hk, k =0,1,... be the Hermite polynomials:

dk 2
Hi(x) = (-1)keX 12— /2
k(x) = (=1) Ik

and Hk(x, a) = a/?Hx(x/ va) for a > 0. As is well-known, we

have
exp {ux - —} Z Hk(x,a)—
and for any continuous local martingale M and n € IN,
dL” = nL"Vdm,, (6)

where L) = H (M, (M)) for k € N.



Time-change for the rBergomi model
Define W, W’, B by

9 1
R 1 T (t) " 1 T (t)
Wt = ﬁ Ay, VQ(S)dWS, W; = m f vV Vo(S)dWé
0

00(0)

and B = pW + /1 - p2W’, where

1 S
1(8) = 00(6)2](; Vvo(t)dt.

Then, (W, W) is a 2-dimensional Brownian motion under Ey
and for any square-integrable function f,

@ f((1)

0 VVvo(t71(1))

fa f(s)dWs = 00(6) dW,.
0



Therefore,

1 2
My = 30(6) f exp {GHF} - %”lf”(t)lz”} dB;
0

where

U (=1(4) — =1(g)\H-1/2
FZI—TIH\/gGOG(,_?) fo @ (t)VO(TT_f(i)))) dWs, uelo,1]
Let

G = Hi(FL(Fy).
Then, we have

1 772
My = 00(6) f exp {—g”h—‘(t)FH
0

62H R

exp 9”F}——2 (Ft)t}dBt

My, _ oHk

:00(9)f exp{——le 1(t)|2H} ¥ = dB;.
0



Stochastic expansion for the rBergomi model

Lemma: We have (2) with

where



Density expansion for the rBergomi model

Theorem: We have (5) with

Qo(X) = ¢(X){1 - Ooée)"h (x) + ka(0)(Ha(x) — 00(6)Hz(x))6"

+ (K4H4(X) + k3(0)° H6(x)) 92”},

2
where
k3(0) = an\/7 = f f s)M172 \vo(s)dsvo(t)dt
20 Uo
(1 +2p? )17 p r]HHﬁ (H+3/2,H+3/2)
Kgq =

GHTPEHTD) 2(H + 1/2)2



Brownian bridge

Since M( ) — B, computing EO[M(’ |M = x] reduces to
compute expectations of iterated mtegrals of Brownian bridge.

Lemma :

A

E

E

E

i fo 1 fo t f(s, t)désdt] = Hi(x) fo 1 fo t f(s, t)dsdt,
: fo 1 fo t f(s, t)stdBt] = Hy(x) fo 1 fo t f(s, t)dsdt,
| fo 1 ( fo t f(s, t)dBS)2 dB,

2

= Hs(x) f01 (fot f(s, t)ds) dt
+ Hi(x) fo 1 fo t f(s, t)2dsdt.

and...



2

f; (f; (s, t)dBt) ds
= Hy(x) f(f )ds+ff f(s,t)2dtds,
L o] |- [ e

+ Ha(x )f (ft f(s, t)ds+ft1 f(t,u)du)zdt
+](;1 fot f(s, t)?dsdt.

E




Concluding remarks

There is no technical difficulty to go higher orders.

The same approach works for the small vol-of-vol
perturbation.

The rBergomi model explains the power law of volatility
skew (and curvature).

When the forward variance curve is flat, an expansion of
the Forde-Zhang rate function of large deviation gives the
same expansion of the implied volatility. Cf. Bayer et al.

When the forward variance curve is flat, the (formal) small
vol-of-vol (Bergomi-Guyon) expansion given by Bayer et
al. (2016) coincides with our expansion.



