At-the-money short-term asymptotics under stochastic volatility models

Masaaki Fukasawa

Osaka University
11 Jan 2017
Joint work with O. El Euch, J. Gatheral and M. Rosenbaum

Overview

The aim of study:

- To derive an asymptotic expansion of the implied volatility.
- To prove the validity of the expansion (estimate the error).
- Examine if a model is consistent to empirical facts.
- The framework should include rough volatility models.
- Make calibration more efficient.

The plan of talk:

- On asymptotic methods for the implied volatility.
- At-the-money, short-term asymptotic expansions.
- Asymptotic skew and curvature.
- The SABR and rough Bergomi models.

Stochastic volatility models

(Ω, \mathcal{F}, P) : a probability space with a filtration $\left\{\mathcal{F}_{t} ; t \in \mathbb{R}\right\}$.
A log price process Z is assumed to follow (under Q)

$$
\mathrm{d} Z_{t}=r \mathrm{~d} t-\frac{1}{2} v_{t} \mathrm{~d} t+\sqrt{v_{t}} \mathrm{~d} B_{t} .
$$

- $r \in \mathbb{R}$ stands for an interest rate,
- v is a progressively measurable positive process with respect to a smaller filtration $\left\{\mathcal{G}_{t} ; t \in \mathbb{R}\right\}, \mathcal{G}_{t} \subset \mathcal{F}_{t}$.
- The $\left\{\mathcal{F}_{t}\right\}$-Brownian motion B is decomposed as

$$
\mathrm{d} B_{t}=\rho_{t} \mathrm{~d} W_{t}+\sqrt{1-\rho_{t}^{2}} \mathrm{~d} W_{t}^{\prime}
$$

where W is an $\left\{\mathcal{G}_{t}\right\}$-BM and W^{\prime} is independent of $\left\{\mathcal{G}_{t}\right\}$.

- ρ is a progressively measurable processes with respect to $\left\{\mathcal{G}_{t}\right\}$ and taking values in $(-1,1)$.

A typical situation for stochastic volatility models is that $\left(W, W^{\prime}\right)$ is a two dimensional $\left\{\mathcal{F}_{t}\right\}$-Brownian motion and $\left\{\mathcal{G}_{t}\right\}$ is the filtration generated by W, that is,

$$
\mathcal{G}_{t}=\mathcal{N} \vee \sigma\left(W_{s}-W_{r} ; r \leq s \leq t\right)
$$

where \mathcal{N} is the null sets of \mathcal{F}.

Example: $\rho \in(-1,1)$ is constant and

$$
v_{t}=\exp \left(Y_{t}\right), \quad \mathrm{d} Y_{t}=\mu \mathrm{d} t+\eta \mathrm{d} W_{t}^{H}
$$

where W^{H} is a fractional Brownian motion driven by W as

$$
W_{t}^{H}=c_{H} \int_{-\infty}^{t}(t-s)^{H-1 / 2}-(-s)_{+}^{H-1 / 2} \mathrm{~d} W_{t}
$$

When $H=1 / 2$, then the model is the log-normal SABR.

Of course, $\left\{\mathcal{G}_{t}\right\}$ can support a higher dimensional BM or Lévy.

The Black-Scholes implied volatility

An arbitrage-free price $p(K, \theta)$ of a put option at time 0 with strike $K>0$ and maturity $\theta>0$ is given by

$$
\begin{aligned}
p(K, \theta) & =e^{-r \theta} E^{Q}\left[\left(K-\exp \left(Z_{\theta}\right)\right)_{+} \mid \mathcal{F}_{0}\right] \\
& =e^{-r \theta} \int_{0}^{K} Q\left(\log x \geq Z_{\theta} \mid \mathcal{F}_{0}\right) \mathrm{d} x
\end{aligned}
$$

Denote by $p_{\mathrm{BS}}(K, \theta, \sigma)$ the put option price with strike price K and maturity θ under the Black-Scholes model with volatility parameter $\sigma>0$.

Given a put option price $p(K, \theta), K=F e^{k}, F=e^{r \theta}$, the implied volatility $\sigma_{\mathrm{BS}}(k, \theta)$ is defined through

$$
p_{\mathrm{BS}}\left(K, \theta, \sigma_{\mathrm{BS}}(k, \theta)\right)=p(K, \theta) .
$$

Asymptotic analyses for stochastic volatility

1. Perturbation expansions:

- Introduce an artificial parameter ϵ as $v_{t}=v_{t}^{\epsilon}$.
- Consider

$$
\int_{0}^{\theta} v_{t}^{\epsilon} \mathrm{d} t \rightarrow \int_{0}^{\theta} v_{t}^{0} \mathrm{~d} t=: \sigma^{2} \theta
$$

which is deterministic.

- The limit model $(\epsilon \rightarrow 0)$ is the Black-Scholes.
- regular or singular: Yoshida's martingale expansion works.
a) small vol-of-vol (Lewis, Bergomi-Guyon)
b) multi-scale (Fouque-Papanicolaou-Sircar-Solna)

2. Short-term (small time-to-maturity) asymptotics:

- $\theta \rightarrow 0$.
- The limit is degenerate:

$$
Z_{\theta}=r \theta-\frac{1}{2} \int_{0}^{\theta} v_{t} \mathrm{~d} t+\int_{0}^{\theta} \sqrt{v}_{t} \mathrm{~d} B_{t}=O(\theta)+O(\sqrt{\theta}) .
$$

- After rescaling as $\theta^{-1 / 2} Z_{\theta}$, the limit model is the Bachelier.

Short-term asymptotics

1. Large deviation

- Does not rescale Z^{θ}.
- For the transition density $p_{\theta}(x, y)$ of Z^{θ},

$$
-2 \theta \log p_{\theta}(x, y) \rightarrow \inf \left\{\|h\|_{2}^{2} ; \varphi(0)=x, \varphi(1)=y, \dot{\varphi}=v h\right\}
$$

- Heat kernel expansion, the SABR formula, ...

2. Edgeworth expansion

- Rescale $\theta^{-1 / 2} Z_{\theta}$ to get a normal limit law.
- Yoshida, Kunitomo-Takahashi (small diffusion expansions)
- Medvedev-Scaillet: rescale as $z=\frac{k}{\sigma_{\mathrm{BS}}(k, \theta) \sqrt{\theta}}$ to expand $\sigma_{\mathrm{BS}}(k, \theta)$.
- Have a closer look around at-the-money $k=0$.
- Here, we give a rigorous approach under a mild condition (in particular, we do not rely on the Malliavin calculus).

The strategy

Stochastic expansion
\Downarrow
Characteristic function expansion
\Downarrow
Density expansion
\Downarrow
Put option price expansion
\Downarrow
Implied volatility expansion
\Downarrow
Asymptotic skew and curvature
Each parts are in fact not very new...
Watanabe, Yoshida, Kunitomo and Takahashi
Rem. a different approach in F. (2017), only for the 1st order.

The framework

Recall

$$
\mathrm{d} Z_{t}=r \mathrm{~d} t-\frac{1}{2} v_{t} \mathrm{~d} t+\sqrt{v}_{t} \mathrm{~d} B_{t}, \quad \mathrm{~d} B_{t}=\rho_{t} \mathrm{~d} W_{t}+\sqrt{1-\rho_{t}^{2}} \mathrm{~d} W_{t}^{\prime}
$$

Denote by E_{0} and $\|\cdot\|_{p}$ respectively the expectation and the L^{p} norm under the regular conditional probability measure given \mathcal{F}_{0}, of which the existence is assumed.

Define the forward variance curve $v_{0}(t)$ by

$$
v_{0}(t)=E_{0}\left[v_{t}\right]=E^{Q}\left[v_{t} \mid \mathcal{F}_{0}\right]
$$

We impose the following technical condition:
$\sup _{\theta \in(0,1)}\left\|\frac{1}{\theta} \int_{0}^{\theta} v_{t} \mathrm{~d} t\right\|_{p}<\infty, \sup _{\theta \in(0,1)}\left\|\left\{\frac{1}{\theta} \int_{0}^{\theta} v_{t}\left(1-\rho_{t}^{2}\right) \mathrm{d} t\right\}^{-1}\right\|_{p}<\infty$.

Stochastic expansion

Let

$$
M_{\theta}=\int_{0}^{\theta} \sqrt{v_{t}} \mathrm{~d} B_{t},\langle M\rangle_{\theta}=\int_{0}^{\theta} v_{t} \mathrm{~d} t, \quad \sigma_{0}(\theta)=\sqrt{\int_{0}^{\theta} v_{0}(t) \mathrm{d} u}
$$

We assume the following asymptotic structure: there exists a family of random vectors

$$
\left\{\left(M_{\theta}^{(0)}, M_{\theta}^{(1)}, M_{\theta}^{(2)}, M_{\theta}^{(3)}\right) ; \theta \in(0,1)\right\}, \sup _{\theta \in(0,1)}\left\|M_{\theta}^{(i)}\right\|_{p}<\infty
$$

for all $p>0$ and $i=1,2,3$ such that $\exists H>0$ and $\exists \epsilon>0$,

$$
\begin{align*}
& \lim _{\theta \rightarrow 0} \theta^{-2 H-2 \epsilon}\left\|\frac{M_{\theta}}{\sigma_{0}(\theta)}-M_{\theta}^{(0)}-\theta^{H} M_{\theta}^{(1)}-\theta^{2 H} M_{\theta}^{(2)}\right\|_{1+\epsilon}=0, \\
& \lim _{\theta \rightarrow 0} \theta^{-H-2 \epsilon}\left\|\frac{\langle M\rangle_{\theta}}{\sigma_{0}(\theta)^{2}}-1-\theta^{H} M_{\theta}^{(3)}\right\|_{1+\epsilon}=0 . \tag{2}
\end{align*}
$$

Good to remember $E_{0}\left[M_{\theta}^{2}\right]=E_{0}\left[\langle M\rangle_{\theta}\right]=\sigma_{0}(\theta)^{2}=O(\theta)$.
Further, we assume that the law of $M_{\theta}^{(0)}$ is standard normal for all $\theta>0$ and the derivatives

$$
\begin{align*}
& a_{\theta}^{(i)}(x)=\frac{\mathrm{d}}{\mathrm{dx}}\left\{E_{0}\left[M_{\theta}^{(i)} \mid M_{\theta}^{(0)}=x\right] \phi(x)\right\}, \quad i=1,2,3, \\
& b_{\theta}(x)=\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\left\{E_{0}\left[\left|M_{\theta}^{(1)}\right|^{2} \mid M_{\theta}^{(0)}=x\right] \phi(x)\right\} \tag{3}
\end{align*}
$$

exist in the Schwartz space, where ϕ is the std. normal density.
Example: if $\mathrm{d} \sqrt{v}_{t}=c\left(\sqrt{v}_{t}\right) \mathrm{d} W_{t}$, then by the Itô-Taylor,

$$
\begin{aligned}
& \left.M_{\theta} \approx \int_{0}^{\theta}\left(\sqrt{v}_{0}+c\left(\sqrt{v}_{0}\right) W_{t}\right)+c^{\prime}\left(\sqrt{v}_{0}\right) \int_{0}^{t} W_{s} \mathrm{~d} W_{s}\right) \mathrm{d} B_{t} \\
& =\sqrt{v_{0}} \theta^{1 / 2} \\
& \times\left\{\hat{B}_{1}+\frac{c\left(\sqrt{v_{0}}\right)}{\sqrt{v_{0}}} \theta^{1 / 2} \int_{0}^{1} \hat{W}_{t} \mathrm{~d} \hat{B}_{t}+\frac{c^{\prime}\left(\sqrt{v_{0}}\right)}{\sqrt{v_{0}}} \theta \int_{0}^{1} \int_{0}^{t} \hat{W}_{s} \mathrm{~d} \hat{W}_{s} \mathrm{~d} \hat{B}_{t}\right\} .
\end{aligned}
$$

Characteristic function expansion I

Let $X_{\theta}=\left(Z_{\theta}-Z_{0}-r \theta\right) / \sigma_{0}(\theta)$ and

$$
Y_{\theta}=M_{\theta}^{(0)}+\theta^{H} M_{\theta}^{(1)}+\theta^{2 H} M_{\theta}^{(2)}-\frac{\sigma_{0}(\theta)}{2}\left(1+\theta^{H} M_{\theta}^{(3)}\right)
$$

Lemma: Under (2), for any $\alpha \in \mathbb{N} \cup\{0\}$,

$$
\sup _{|u| \leq \theta^{-\epsilon}}\left|E_{0}\left[X_{\theta}^{\alpha} e^{i u X_{\theta}}\right]-E_{0}\left[Y_{\theta}^{\alpha} e^{i u Y_{\theta}}\right]\right|=o\left(\theta^{2 H+\epsilon}\right)
$$

Proof: Since $\left|e^{i x}-1\right| \leq|x|$, we have
$\left|E_{0}\left[X_{\theta}^{\alpha} e^{i u X_{\theta}}\right]-E_{0}\left[Y_{\theta}^{\alpha} e^{i u Y_{\theta}}\right]\right| \leq E_{0}\left[\left|X_{\theta}^{\alpha}-Y_{\theta}^{\alpha}\right|\right]+u E_{0}\left[\left|Y_{\theta}\right|^{\alpha}\left|X_{\theta}-Y_{\theta}\right|\right]$

$$
\leq C(\alpha, \epsilon)(1+|u|)\left\|X_{\theta}-Y_{\theta}\right\|_{1+\epsilon}
$$

for some constant $C(\alpha, \epsilon)>0$. Since $\sigma_{0}(\theta)=O\left(\theta^{1 / 2}\right)$, we obtain the result.

Characteristic function expansion II

Lemma: For any $\delta \in[0,(H-\epsilon) / 3)$ and any $\alpha \in \mathbb{N} \cup\{0\}$,
$\sup _{|u| \leq \theta^{-\delta}} \mid E_{0}\left[Y_{\theta}^{\alpha} e^{i u Y_{\theta}}\right]$

$$
-E_{0}\left[e^{i u M_{\theta}^{(0)}}\left(\left(M_{\theta}^{(0)}\right)^{\alpha}+A\left(\alpha, u, M_{\theta}^{(0)}\right)+B\left(\alpha, u, M_{\theta}^{(0)}\right)\right)\right] \mid=o\left(\theta^{2 H+\epsilon}\right)
$$

where
$A_{\theta}(\alpha, u, x)=\left(i u x^{\alpha}+\alpha x^{\alpha-1}\right)\left(E_{0}\left[Y_{\theta} \mid M_{\theta}^{(0)}=x\right]-x\right)$,
$B_{\theta}(\alpha, u, x)=\left(-\frac{u^{2}}{2} x^{\alpha}+i u x^{\alpha-1}+\frac{\alpha(\alpha-1)}{2} x^{\alpha-2}\right) E_{0}\left[\left|M_{\theta}^{(1)}\right|^{2} \mid M_{\theta}^{(0)}=x\right]$.
Proof: This follows from the fact that

$$
\left|e^{i x}-1-i x+\frac{x^{2}}{2}\right| \leq \frac{|x|^{3}}{6}
$$

for all $x \in \mathbb{R}$.

Characteristic function expansion III

Lemma: Define $q_{\theta}(x)$ by

$$
\begin{align*}
q_{\theta}(x)= & \phi(x)-\theta^{H} a_{\theta}^{(1)}(x)-\theta^{2 H} a_{\theta}^{(2)}(x) \\
& -\frac{\sigma_{0}(\theta)}{2}\left(x \phi(x)-\theta^{H} a_{\theta}^{(3)}(x)\right)+\frac{\theta^{2 H}}{2} b_{\theta}(x), \tag{4}
\end{align*}
$$

where $a_{\theta}^{(i)}$ and b_{θ} are defined by (3). Then,

$$
\begin{aligned}
& \int_{\mathbb{R}} e^{i u x} x^{\alpha} q_{\theta}(x) \mathrm{d} x \\
& =E_{0}\left[e^{i u M_{\theta}^{(0)}}\left(\left(M_{\theta}^{(0)}\right)^{\alpha}+A\left(\alpha, u, M_{\theta}^{(0)}\right)+B\left(\alpha, u, M_{\theta}^{(0)}\right)\right)\right]
\end{aligned}
$$

Proof: This follows from integration by parts.

Density expansion I

Lemma: For any $\alpha, j \in \mathbb{N} \cup\{0\}$,

$$
\sup _{\theta \in(0,1)} \int|u|^{j}\left|E_{0}\left[X_{\theta}^{\alpha} e^{i u X_{\theta}}\right]\right| \mathrm{d} u<\infty
$$

Proof: Since the distribution of X_{θ} is Gaussian conditionally on \mathcal{G}_{θ}, it admits a density $p_{\theta}(x)$ under $Q\left(\cdot \mid \mathcal{F}_{0}\right)$. Furthermore, the density function is in the Schwartz space \mathcal{S} by (1). Therefore,

$$
\begin{aligned}
\int|u|^{j}\left|E_{0}\left[X_{\theta}^{\alpha} e^{i u x_{\theta}}\right]\right| \mathrm{d} u & =\int\left|\int u^{j} x^{\alpha} e^{i u x} p_{\theta}(x) \mathrm{d} x\right| \mathrm{d} u \\
& =\int\left|\int e^{i u x} \partial_{x}^{j}\left(x^{\alpha} p_{\theta}(x)\right) \mathrm{d} x\right| \mathrm{d} u<\infty
\end{aligned}
$$

since the Fourier transform is a map from \mathcal{S} to \mathcal{S}.

Density expansion II

Theorem: The law of X_{θ} admits a density p_{θ} and for any $\alpha \in \mathbb{N} \cup\{0\}$,

$$
\begin{equation*}
\sup _{x \in \mathbb{R}}\left(1+x^{2}\right)^{\alpha}\left|p_{\theta}(x)-q_{\theta}(x)\right|=o\left(\theta^{2 H}\right) \tag{5}
\end{equation*}
$$

as $\theta \rightarrow 0$, where q_{θ} is defined by (4).
Proof: As seen in the proof of Lemma, the density p_{θ} exists in the Schwartz space. By the Fourier identity

$$
\begin{aligned}
& \left(1+x^{2}\right)^{\alpha}\left|p_{\theta}(x)-q_{\theta}(x)\right| \\
& =\frac{1}{2 \pi}\left|\iiint^{i u y}\left(1+y^{2}\right)^{\alpha}\left(p_{\theta}(y)-q_{\theta}(y)\right) \mathrm{d} y e^{-i u x} \mathrm{~d} u\right| \\
& =\frac{1}{2 \pi}\left\{\int_{|u| \theta^{-\delta}}|\cdot| \mathrm{d} u+\int_{| | u \geq \theta^{-\delta}}|\cdot| \mathrm{d} u\right\} .
\end{aligned}
$$

Combining the lemmas in the previous section, taking $\delta \in(0, \min \{\epsilon,(H-\epsilon) / 3\})$, we have

$$
\int_{|u| \leq \theta^{-\delta}}\left|\int e^{i u y}\left(1+y^{2}\right)^{\alpha}\left(p_{\theta}(y)-q_{\theta}(y)\right) \mathrm{d} y\right| \mathrm{d} u=o\left(\theta^{2 H}\right) .
$$

On the other hand,

$$
\begin{aligned}
& \int_{\mid u \geq \theta^{-\delta}}\left|\int e^{i u y}\left(1+y^{2}\right)^{\alpha} p_{\theta}(y) \mathrm{d} y\right| \mathrm{d} u \\
& \leq \theta^{j \delta} \int_{|u| \geq \theta^{-\delta}}\left|u u^{j}\right| E_{0}\left[\left(1+X_{\theta}^{2}\right)^{\alpha} e^{\left.i u X_{\theta}\right] \mid \mathrm{d} u=O\left(\theta^{j \delta}\right)}\right.
\end{aligned}
$$

for any $j \in \mathbb{N}$ by Lemma. The remainder

$$
\int_{|u| \geq \theta^{-\delta}}\left|\int e^{i u y}\left(1+y^{2}\right)^{\alpha} q_{\theta}(y) \mathrm{d} y\right| \mathrm{d} u
$$

is handled in the same manner.

Put option price expansion I

Denoting by p_{θ} the density of X_{θ} as before,

$$
\frac{p\left(F e^{\sigma_{0}(\theta) z}, \theta\right)}{F_{\sigma_{0}}(\theta)}=e^{-r \theta} \int_{-\infty}^{z} \int_{-\infty}^{\zeta} p_{\theta}(x) \mathrm{d} x e^{\sigma_{0}(\theta) \zeta} \mathrm{d} \zeta
$$

Lemma: Let $q_{\theta}(x), \theta>0$ be a family of functions on \mathbb{R}. If

$$
\sup _{x \in \mathbb{R}}\left(1+x^{2}\right)^{\alpha}\left|p_{\theta}(x)-q_{\theta}(x)\right|=o\left(\theta^{\beta}\right)
$$

for some $\alpha>5 / 4$ and $\beta>0$, then for any $z_{0} \in \mathbb{R}$,

$$
\frac{p\left(F e^{\sigma_{0}(\theta) z}, \theta\right)}{F \sigma_{0}(\theta)}=e^{-r \theta} \int_{-\infty}^{z} \int_{-\infty}^{\zeta} q_{\theta}(x) \mathrm{d} x e^{\sigma_{0}(\theta) \zeta} \mathrm{d} \zeta+o\left(\theta^{\beta}\right)
$$

uniformly in $z \leq z_{0}$.

Put option price expansion II

Proof: By the Cauchy-Schwarz inequality,

$$
\begin{aligned}
& e^{-r \theta} \int_{-\infty}^{z} \int_{-\infty}^{\zeta}\left|p_{\theta}(x)-q_{\theta}(x)\right| \mathrm{d} z e^{\sigma_{0}(\theta) \zeta} \mathrm{d} \zeta \\
& \leq e^{-r \theta} \int_{-\infty}^{z} \sqrt{\int_{-\infty}^{\zeta} \frac{\mathrm{d} x}{\left(1+x^{2}\right)^{2 \alpha-1}}} \\
& \times \sqrt{\int_{-\infty}^{\zeta}\left(1+x^{2}\right)^{2 \alpha-1}\left|p_{\theta}(x)-q_{\theta}(x)\right|^{2} \mathrm{~d} z e^{\sigma_{0}(\theta) \zeta} \mathrm{d} \zeta} \\
& \leq \pi e^{-r \theta+\sigma_{0}(\theta) z} \sup _{x \in \mathbb{R}}\left(1+x^{2}\right)^{\alpha}\left|p_{\theta}(x)-q_{\theta}(x)\right| \\
& \times \int_{-\infty}^{z} \sqrt{\int_{-\infty}^{\zeta} \frac{\mathrm{d} x}{\left(1+x^{2}\right)^{2 \alpha-1}}} \mathrm{~d} \zeta
\end{aligned}
$$

which is $o\left(\theta^{\beta}\right)$ if $\alpha>5 / 4$.

Put option price expansion III

Theorem: Suppose we have (5) with q_{θ} of the form

$$
\begin{gathered}
q_{\theta}(x)=\phi(x)\left\{1-\frac{\sigma_{0}(\theta)}{2} H_{1}(x)+\kappa_{3}(\theta)\left(H_{3}(x)-\sigma_{0}(\theta) H_{2}(x)\right) \theta^{H}\right. \\
\left.+\left(\kappa_{4} H_{4}(x)+\frac{\kappa_{3}(\theta)^{2}}{2} H_{6}(x)\right) \theta^{2 H}\right\}
\end{gathered}
$$

where H_{k} is the k th Hermite polynomial :
$H_{1}(x)=x, H_{2}(x)=x^{2}-1, H_{3}(x)=x^{3}-3 x, H_{4}(x)=x^{4}-6 x^{2}+3, \ldots$
Then, for any $z_{0} \in \mathbb{R}$,

$$
\begin{aligned}
& \frac{p\left(F e^{\sigma_{0}(\theta) z}, \theta\right)}{F e^{-r \theta} \sigma_{0}(\theta)}=\frac{\Phi(z) e^{\sigma_{0}(\theta) z}-\Phi\left(z-\sigma_{0}(\theta)\right)}{\sigma_{0}(\theta)} \\
& +\phi(z)\left\{\kappa_{3} H_{1}(z) e^{\sigma_{0}(\theta) z} \theta^{H}+\left(\kappa_{4} H_{2}(z)+\frac{\kappa_{3}^{2}}{2} H_{4}(z)\right) \theta^{2 H}\right\}+o\left(\theta^{2 H}\right)
\end{aligned}
$$

uniformly in $z \leq z_{0}$, where $\kappa_{3}=\kappa_{3}(\theta)$.

Implied volatility expansion

Theorem: Under the same condition as before,

$$
\begin{aligned}
\sigma_{\mathrm{BS}}(\sqrt{\theta} z, \theta)= & \kappa_{2}\left\{1+\frac{\kappa_{3}}{\kappa_{2}} z \theta^{H}+\left(\frac{3 \kappa_{3}^{2}}{2}-\kappa_{4}+\frac{\kappa_{4}-3 \kappa_{3}^{2}}{\kappa_{2}^{2}} z^{2}\right) \theta^{2 H}\right\} \\
& +o\left(\theta^{2 H}\right)
\end{aligned}
$$

when $H<1 / 2$ and
$=\kappa_{2}\left\{1+\frac{\kappa_{3}}{\kappa_{2}} z \sqrt{\theta}+\left(\frac{3 \kappa_{3}^{2}}{2}-\kappa_{4}+\left(\frac{\kappa_{4}-3 \kappa_{3}^{2}}{\kappa_{2}^{2}}+\frac{\kappa_{3}}{2 \kappa_{2}}\right) z^{2}\right) \theta\right\}+o(\theta)$
when $H=1 / 2$, where $\kappa_{2}=\kappa_{2}(\theta)=\sigma_{0}(\theta) / \sqrt{\theta}$ and $\kappa_{3}=\kappa_{3}(\theta)$.
Note that $\kappa_{2}(\theta)=\sqrt{\text { the averaged forward variance }}$.

Asymptotics for at-the-money skew and curvature

Theorem: Under the same condition as before,

$$
\begin{aligned}
& \partial_{k} \sigma_{\mathrm{BS}}(0, \theta)=\kappa_{3}(\theta) \theta^{H-1 / 2}+o\left(\theta^{2 H-1 / 2}\right), \\
& \partial_{k}^{2} \sigma_{\mathrm{BS}}(0, \theta)=2 \frac{\kappa_{4}-3 \kappa_{3}(\theta)^{2}}{\kappa_{2}(\theta)} \theta^{2 H-1}+\kappa_{3}(\theta) \theta^{H-1 / 2}+o\left(\theta^{2 H-1}\right) .
\end{aligned}
$$

Proof: Combine the previous expansions and
$\partial_{k} \sigma_{\mathrm{BS}}(k, \theta)=\frac{Q\left(k \geq \sigma_{0}(\theta) X_{\theta} \mid \mathscr{F}_{0}\right)-\Phi\left(f_{+}(k, \theta)\right)}{\sqrt{\theta} \phi\left(f_{+}(k, \theta)\right)}$,
$\partial_{k}^{2} \sigma_{\mathrm{BS}}(k, \theta)=\frac{p_{\theta}\left(k / \sigma_{0}(\theta)\right)}{\sigma_{0}(\theta) \sqrt{\theta} \phi\left(f_{+}(k, \theta)\right)}-\sigma_{\mathrm{BS}}(k, \theta) \partial_{k} f_{-}(k, \theta) \partial_{k} f_{+}(k, \theta)$,
where

$$
f_{ \pm}(k, \theta)=\frac{k}{\sqrt{\theta} \sigma_{\mathrm{BS}}(k, \theta)} \pm \frac{\sqrt{\theta} \sigma_{\mathrm{BS}}(k, \theta)}{2} .
$$

The rough Bergomi model

Let $\rho_{t}=\rho \in(-1,1)$ be a constant and

$$
\mathrm{d} \log v_{t}=\eta \mathrm{d} W_{t}^{H}+\text { deterministic drift, }
$$

where $\eta>0$ is a constant and W^{H} is a fractional Brownian motion with the Hurst parameter $H \in(0,1 / 2)$, given as

$$
W_{t}^{H}=c_{H} \int_{-\infty}^{t}(t-s)^{H-1 / 2}-(-s)_{+}^{H-1 / 2} \mathrm{~d} W_{s}
$$

with a normalizing constant $c_{H}>0$. Since v_{t} is log-normally distributed, (1) holds by Jensen's inequality. We have

$$
v_{t}=v_{0}(t) \exp \left\{\eta_{H} \sqrt{2 H} \int_{0}^{t}(t-s)^{H-1 / 2} \mathrm{~d} W_{s}-\frac{\eta_{H}^{2}}{2} t^{2 H}\right\}
$$

where $\eta_{H}=\eta c_{H} / \sqrt{2 H}$. Note that $v_{0}(t)$ is rough.

The Hermite polynomials

Let $H_{k}, k=0,1, \ldots$ be the Hermite polynomials:

$$
H_{k}(x)=(-1)^{k} e^{x^{2} / 2} \frac{\mathrm{~d}^{k}}{\mathrm{~d} x^{k}} e^{-x^{2} / 2}
$$

and $H_{k}(x, a)=a^{k / 2} H_{k}(x / \sqrt{a})$ for $a>0$. As is well-known, we have

$$
\exp \left\{u x-\frac{a u^{2}}{2}\right\}=\sum_{k=0}^{\infty} H_{k}(x, a) \frac{u^{k}}{k!}
$$

and for any continuous local martingale M and $n \in \mathbb{N}$,

$$
\begin{equation*}
\mathrm{d} L_{t}^{(n)}=n L_{t}^{(n-1)} \mathrm{d} M_{t} \tag{6}
\end{equation*}
$$

where $L^{(k)}=H_{k}(M,\langle M\rangle)$ for $k \in \mathbb{N}$.

Time-change for the rBergomi model

Define $\hat{W}, \hat{W}^{\prime}, \hat{B}$ by
$\hat{W}_{t}=\frac{1}{\sigma_{0}(\theta)} \int_{0}^{\tau^{-1}(t)} \sqrt{v_{0}(s)} \mathrm{d} W_{s}, \hat{W}_{t}^{\prime}=\frac{1}{\sigma_{0}(\theta)} \int_{0}^{\tau^{-1}(t)} \sqrt{v_{0}(s)} \mathrm{d} W_{s}^{\prime}$
and $\hat{B}=\rho \hat{W}+\sqrt{1-\rho^{2}} \hat{W}^{\prime}$, where

$$
\tau(s)=\frac{1}{\sigma_{0}(\theta)^{2}} \int_{0}^{s} v_{0}(t) \mathrm{d} t .
$$

Then, ($\hat{W}, \hat{W}^{\prime}$) is a 2-dimensional Brownian motion under E_{0} and for any square-integrable function f,

$$
\int_{0}^{a} f(s) \mathrm{d} W_{s}=\sigma_{0}(\theta) \int_{0}^{\tau(a)} \frac{f\left(\tau^{-1}(t)\right)}{\sqrt{v_{0}\left(\tau^{-1}(t)\right)}} \mathrm{d} \hat{W}_{t} .
$$

Therefore,

$$
M_{\theta}=\sigma_{0}(\theta) \int_{0}^{1} \exp \left\{\theta^{H} F_{t}^{t}-\frac{\eta_{H}^{2}}{4}\left|\tau^{-1}(t)\right|^{2 H}\right\} d \hat{B}_{t}
$$

where

$$
F_{u}^{t}=\eta_{H} \sqrt{\frac{H}{2}} \frac{\sigma_{0}(\theta)}{\theta^{H}} \int_{0}^{u} \frac{\left(\tau^{-1}(t)-\tau^{-1}(s)\right)^{H-1 / 2}}{\sqrt{v_{0}\left(\tau^{-1}(s)\right)}} \mathrm{d} \hat{W}_{s}, \quad u \in[0, t] .
$$

Let

$$
G_{t}^{(k)}=H_{k}\left(F_{t}^{t},\left\langle F^{t}\right\rangle_{t}\right)
$$

Then, we have

$$
\begin{aligned}
M_{\theta} & =\sigma_{0}(\theta) \int_{0}^{1} \exp \left\{-\frac{\eta_{H}^{2}}{8}\left|\tau^{-1}(t)\right|^{2 H}\right\} \exp \left\{\theta^{H} F_{t}^{t}-\frac{\theta^{2 H}}{2}\left\langle F^{t}\right\rangle_{t}\right\} \mathrm{d} \hat{B}_{t} \\
& =\sigma_{0}(\theta) \int_{0}^{1} \exp \left\{-\frac{\eta_{H}^{2}}{8}\left|\tau^{-1}(t)\right|^{2 H}\right\} \sum_{k=0}^{\infty} G_{t}^{(k)} \frac{\theta^{H k}}{k!} \mathrm{d} \hat{B}_{t}
\end{aligned}
$$

Stochastic expansion for the rBergomi model

Lemma: We have (2) with

$$
\begin{aligned}
& M_{\theta}^{(0)}=\hat{B}_{1}, \\
& M_{\theta}^{(1)}=\int_{0}^{1} h_{\theta}(t) G_{t}^{(1)} \mathrm{d} \hat{B}_{t}, \\
& M_{\theta}^{(2)}=\int_{0}^{1}\left\{\frac{h_{\theta}(t)-1}{\theta^{2 H}}+h_{\theta}(t) \frac{G_{t}^{(2)}}{2}\right\} \mathrm{d} \hat{B}_{t}, \\
& M_{\theta}^{(3)}=2 \int_{0}^{1} F_{t}^{t} \mathrm{~d} t,
\end{aligned}
$$

where

$$
h_{\theta}(t)=\exp \left\{-\frac{\eta_{H}^{2}}{8}\left|\tau^{-1}(t)\right|^{2 H}\right\} .
$$

Density expansion for the rBergomi model

Theorem: We have (5) with

$$
\begin{gathered}
q_{\theta}(x)=\phi(x)\left\{1-\frac{\sigma_{0}(\theta)}{2} H_{1}(x)+\kappa_{3}(\theta)\left(H_{3}(x)-\sigma_{0}(\theta) H_{2}(x)\right) \theta^{H}\right. \\
\left.+\left(\kappa_{4} H_{4}(x)+\frac{\kappa_{3}(\theta)^{2}}{2} H_{6}(x)\right) \theta^{2 H}\right\},
\end{gathered}
$$

where

$$
\begin{aligned}
& \kappa_{3}(\theta)=\rho \eta_{H} \sqrt{\frac{H}{2}} \frac{1}{\theta^{H} \sigma_{0}(\theta)^{3}} \int_{0}^{\theta} \int_{0}^{t}(t-s)^{H-1 / 2} \sqrt{v_{0}(s)} \mathrm{d} s v_{0}(t) \mathrm{d} t \\
& \kappa_{4}=\frac{\left(1+2 \rho^{2}\right) \eta_{H}^{2} H}{(2 H+1)^{2}(2 H+2)}+\frac{\rho^{2} \eta_{H}^{2} H \beta(H+3 / 2, H+3 / 2)}{2(H+1 / 2)^{2}}
\end{aligned}
$$

Brownian bridge

Since $M_{\theta}^{(0)}=\hat{B}_{1}$, computing $E_{0}\left[M_{\theta}^{(i)} \mid M_{\theta}^{(0)}=x\right]$ reduces to compute expectations of iterated integrals of Brownian bridge.

Lemma :

$$
\begin{aligned}
& \hat{E}\left[\int_{0}^{1} \int_{0}^{t} f(s, t) \mathrm{d} \hat{B}_{s} \mathrm{~d} t\right]=H_{1}(x) \int_{0}^{1} \int_{0}^{t} f(s, t) \mathrm{d} s \mathrm{~d} t \\
& \hat{E}\left[\int_{0}^{1} \int_{0}^{t} f(s, t) \mathrm{d} \hat{B}_{s} \mathrm{~d} \hat{B}_{t}\right]=H_{2}(x) \int_{0}^{1} \int_{0}^{t} f(s, t) \mathrm{d} s \mathrm{~d} t \\
& \hat{E}\left[\int_{0}^{1}\left(\int_{0}^{t} f(s, t) \mathrm{d} \hat{B}_{s}\right)^{2} \mathrm{~d} \hat{B}_{t}\right]=H_{3}(x) \int_{0}^{1}\left(\int_{0}^{t} f(s, t) \mathrm{d} s\right)^{2} \mathrm{~d} t \\
& \\
& +H_{1}(x) \int_{0}^{1} \int_{0}^{t} f(s, t)^{2} \mathrm{~d} s \mathrm{~d} t
\end{aligned}
$$

and...

$$
\begin{aligned}
& \hat{E}\left[\int_{0}^{1}\left(\int_{s}^{1} f(s, t) \mathrm{d} \hat{B}_{t}\right)^{2} \mathrm{~d} s\right] \\
& =H_{2}(x) \int_{0}^{1}\left(\int_{s}^{1} f(s, t) \mathrm{d} t\right)^{2} \mathrm{~d} s+\int_{0}^{1} \int_{s}^{1} f(s, t)^{2} \mathrm{~d} t \mathrm{~d} s \\
& \hat{E}\left[\left(\int_{0}^{1} \int_{0}^{t} f(s, t) \mathrm{d} \hat{B}_{s} \mathrm{~d} \hat{B}_{t}\right)^{2}\right]=H_{4}(x)\left(\int_{0}^{1} \int_{0}^{t} f(s, t) \mathrm{d} s \mathrm{~d} t\right)^{2} \\
& +H_{2}(x) \int_{0}^{1}\left(\int_{0}^{t} f(s, t) \mathrm{d} s+\int_{t}^{1} f(t, u) \mathrm{d} u\right)^{2} \mathrm{~d} t \\
& +\int_{0}^{1} \int_{0}^{t} f(s, t)^{2} \mathrm{~d} s \mathrm{~d} t
\end{aligned}
$$

Concluding remarks

- There is no technical difficulty to go higher orders.
- The same approach works for the small vol-of-vol perturbation.
- The rBergomi model explains the power law of volatility skew (and curvature).
- When the forward variance curve is flat, an expansion of the Forde-Zhang rate function of large deviation gives the same expansion of the implied volatility. Cf. Bayer et al.
- When the forward variance curve is flat, the (formal) small vol-of-vol (Bergomi-Guyon) expansion given by Bayer et al. (2016) coincides with our expansion.

