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Overview

The aim of study:
• To derive an asymptotic expansion of the implied volatility.
• To prove the validity of the expansion (estimate the error).
• Examine if a model is consistent to empirical facts.
• The framework should include rough volatility models.
• Make calibration more efficient.

The plan of talk:
• On asymptotic methods for the implied volatility.
• At-the-money, short-term asymptotic expansions.
• Asymptotic skew and curvature.
• The SABR and rough Bergomi models.



Stochastic volatility models
(Ω,F ,P) : a probability space with a filtration {Ft ; t ∈ R}.
A log price process Z is assumed to follow (under Q)

dZt = rdt − 1
2

vtdt +
√

v tdBt .

• r ∈ R stands for an interest rate,
• v is a progressively measurable positive process with

respect to a smaller filtration {Gt ; t ∈ R}, Gt ⊂ Ft .
• The {Ft }-Brownian motion B is decomposed as

dBt = ρtdWt +
√

1 − ρ2
t dW ′

t ,

where W is an {Gt }-BM and W ′ is independent of {Gt }.
• ρ is a progressively measurable processes with respect to
{Gt } and taking values in (−1,1).



A typical situation for stochastic volatility models is that (W ,W ′)
is a two dimensional {Ft }-Brownian motion and {Gt } is the
filtration generated by W, that is,

Gt = N ∨ σ(Ws −Wr ; r ≤ s ≤ t),

where N is the null sets of F .

Example: ρ ∈ (−1,1) is constant and

vt = exp(Yt), dYt = µdt + ηdWH
t ,

where WH is a fractional Brownian motion driven by W as

WH
t = cH

∫ t

−∞
(t − s)H−1/2 − (−s)H−1/2

+ dWt .

When H = 1/2, then the model is the log-normal SABR.

Of course, {Gt } can support a higher dimensional BM or Lévy.



The Black-Scholes implied volatility

An arbitrage-free price p(K , θ) of a put option at time 0 with
strike K > 0 and maturity θ > 0 is given by

p(K , θ) = e−rθEQ [(K − exp(Zθ))+|F0]

= e−rθ
∫ K

0
Q(log x ≥ Zθ|F0)dx .

Denote by pBS(K , θ, σ) the put option price with strike price K
and maturity θ under the Black-Scholes model with volatility
parameter σ > 0.

Given a put option price p(K , θ), K = Fek , F = erθ, the implied
volatility σBS(k , θ) is defined through

pBS(K , θ, σBS(k , θ)) = p(K , θ).



Asymptotic analyses for stochastic volatility
1. Perturbation expansions:

• Introduce an artificial parameter ϵ as vt = vϵt .
• Consider ∫ θ

0
vϵt dt →

∫ θ

0
v0

t dt =: σ2θ

which is deterministic.
• The limit model (ϵ→ 0) is the Black-Scholes.
• regular or singular: Yoshida’s martingale expansion works.

a) small vol-of-vol (Lewis, Bergomi-Guyon)
b) multi-scale (Fouque-Papanicolaou-Sircar-Solna)

2. Short-term (small time-to-maturity) asymptotics:
• θ→ 0.
• The limit is degenerate:

Zθ = rθ − 1
2

∫ θ

0
vt dt +

∫ θ

0

√
v t dBt = O(θ) + O(

√
θ).

• After rescaling as θ−1/2Zθ, the limit model is the Bachelier.



Short-term asymptotics

1. Large deviation
• Does not rescale Zθ.
• For the transition density pθ(x , y) of Zθ,

−2θ log pθ(x , y)→ inf
{
∥h∥22;φ(0) = x , φ(1) = y , φ̇ = vh

}
• Heat kernel expansion, the SABR formula, ...

2. Edgeworth expansion
• Rescale θ−1/2Zθ to get a normal limit law.
• Yoshida, Kunitomo-Takahashi (small diffusion expansions)

• Medvedev-Scaillet: rescale as z =
k

σBS(k , θ)
√
θ

to expand

σBS(k , θ).
• Have a closer look around at-the-money k = 0.
• Here, we give a rigorous approach under a mild condition

(in particular, we do not rely on the Malliavin calculus).



The strategy

Stochastic expansion
⇓

Characteristic function expansion
⇓

Density expansion
⇓

Put option price expansion
⇓

Implied volatility expansion
⇓

Asymptotic skew and curvature

Each parts are in fact not very new...
Watanabe, Yoshida, Kunitomo and Takahashi

Rem. a different approach in F. (2017), only for the 1st order.



The framework
Recall

dZt = rdt − 1
2

vtdt +
√

v tdBt , dBt = ρtdWt +
√

1 − ρ2
t dW ′

t .

Denote by E0 and ∥ · ∥p respectively the expectation and the Lp

norm under the regular conditional probability measure given
F0, of which the existence is assumed.

Define the forward variance curve v0(t) by

v0(t) = E0[vt ] = EQ [vt |F0].

We impose the following technical condition:

sup
θ∈(0,1)

∥∥∥∥∥∥1
θ

∫ θ

0
vtdt

∥∥∥∥∥∥
p
< ∞, sup

θ∈(0,1)

∥∥∥∥∥∥∥
{

1
θ

∫ θ

0
vt(1 − ρ2

t )dt
}−1

∥∥∥∥∥∥∥
p

< ∞.

(1)



Stochastic expansion
Let

Mθ =
∫ θ

0

√
vtdBt , ⟨M⟩θ =

∫ θ

0
vtdt , σ0(θ) =

√∫ θ

0
v0(t)du.

We assume the following asymptotic structure: there exists a
family of random vectors{

(M(0)
θ
,M(1)
θ
,M(2)
θ
,M(3)
θ

);θ ∈ (0,1)
}
, sup
θ∈(0,1)

∥M(i)
θ
∥p < ∞

for all p > 0 and i = 1,2,3 such that ∃H > 0 and ∃ϵ > 0,

lim
θ→0
θ−2H−2ϵ

∥∥∥∥∥ Mθ
σ0(θ)

−M(0)
θ
− θHM(1)

θ
− θ2HM(2)

θ

∥∥∥∥∥
1+ϵ

= 0,

lim
θ→0
θ−H−2ϵ

∥∥∥∥∥∥ ⟨M⟩θσ0(θ)2 − 1 − θHM(3)
θ

∥∥∥∥∥∥
1+ϵ

= 0.
(2)



Good to remember E0[M2
θ] = E0[⟨M⟩θ] = σ0(θ)2 = O(θ).

Further, we assume that the law of M(0)
θ

is standard normal for
all θ > 0 and the derivatives

a(i)
θ
(x) =

d
dx

{
E0[M

(i)
θ
|M(0)
θ

= x]ϕ(x)
}
, i = 1,2,3,

bθ(x) =
d2

dx2

{
E0[|M(1)

θ
|2|M(0)

θ
= x]ϕ(x)

} (3)

exist in the Schwartz space, where ϕ is the std. normal density.

Example: if d
√

v t = c(
√

v t)dWt , then by the Itô-Taylor,

Mθ ≈
∫ θ

0
(
√

v0 + c(
√

v0)Wt) + c′(
√

v0)

∫ t

0
WsdWs)dBt

=
√

v0θ
1/2

×
{

B̂1 +
c(
√

v0)√
v0
θ1/2

∫ 1

0
ŴtdB̂t +

c′(
√

v0)√
v0
θ

∫ 1

0

∫ t

0
ŴsdŴsdB̂t

}
.



Characteristic function expansion I

Let Xθ = (Zθ − Z0 − rθ)/σ0(θ) and

Yθ = M(0)
θ

+ θHM(1)
θ

+ θ2HM(2)
θ
− σ0(θ)

2

(
1 + θHM(3)

θ

)
.

Lemma: Under (2), for any α ∈N ∪ {0},

sup
|u|≤θ−ϵ

|E0[Xαθe iuXθ ] − E0[Yαθe iuYθ ]| = o(θ2H+ϵ).

Proof: Since |e ix − 1| ≤ |x |, we have

|E0[Xαθe iuXθ ] − E0[Yαθe iuYθ ]| ≤ E0[|Xαθ − Yαθ |] + uE0[|Yθ|α|Xθ − Yθ|]
≤ C(α, ϵ)(1 + |u|)∥Xθ − Yθ∥1+ϵ

for some constant C(α, ϵ) > 0. Since σ0(θ) = O(θ1/2), we
obtain the result. ////



Characteristic function expansion II
Lemma: For any δ ∈ [0, (H − ϵ)/3) and any α ∈N ∪ {0},

sup
|u|≤θ−δ

∣∣∣∣∣∣∣E0[Yαθe iuYθ ]

−E0

[
e iuM(0)

θ

(
(M(0)
θ

)α + A(α,u,M(0)
θ

) + B(α,u,M(0)
θ

)
)]∣∣∣∣∣∣∣ = o(θ2H+ϵ),

where

Aθ(α,u, x) =
(
iuxα + αxα−1

)
(E0[Yθ|M(0)

θ
= x] − x),

Bθ(α,u, x) =
(
−u2

2
xα + iuxα−1 +

α(α − 1)
2

xα−2
)

E0[|M(1)
θ
|2|M(0)

θ
= x].

Proof: This follows from the fact that∣∣∣∣∣∣e ix − 1 − ix +
x2

2

∣∣∣∣∣∣ ≤ |x |36

for all x ∈ R. ////



Characteristic function expansion III

Lemma: Define qθ(x) by

qθ(x) =ϕ(x) − θHa(1)
θ

(x) − θ2Ha(2)
θ

(x)

− σ0(θ)

2
(xϕ(x) − θHa(3)

θ
(x)) +

θ2H

2
bθ(x),

(4)

where a(i)
θ

and bθ are defined by (3). Then,∫
R

e iuxxαqθ(x)dx

= E0

[
e iuM(0)

θ

(
(M(0)
θ

)α + A(α,u,M(0)
θ

) + B(α,u,M(0)
θ

)
)]
.

Proof: This follows from integration by parts. ////



Density expansion I

Lemma: For any α, j ∈N ∪ {0},

sup
θ∈(0,1)

∫
|u|j |E0[Xαθe iuXθ ]|du < ∞

Proof: Since the distribution of Xθ is Gaussian conditionally on
Gθ, it admits a density pθ(x) under Q(·|F0). Furthermore, the
density function is in the Schwartz space S by (1). Therefore,∫

|u|j |E0[Xαθe iuXθ ]|du =

∫ ∣∣∣∣∣∫ ujxαe iuxpθ(x)dx
∣∣∣∣∣ du

=

∫ ∣∣∣∣∣∫ e iux∂j
x(x
αpθ(x))dx

∣∣∣∣∣ du < ∞

since the Fourier transform is a map from S to S. ////



Density expansion II

Theorem: The law of Xθ admits a density pθ and for any
α ∈N ∪ {0},

sup
x∈R

(1 + x2)α|pθ(x) − qθ(x)| = o(θ2H) (5)

as θ→ 0, where qθ is defined by (4).
Proof: As seen in the proof of Lemma, the density pθ exists in
the Schwartz space. By the Fourier identity

(1 + x2)α|pθ(x) − qθ(x)|

=
1

2π

∣∣∣∣∣∫ ∫
e iuy(1 + y2)α(pθ(y) − qθ(y))dye−iuxdu

∣∣∣∣∣
=

1
2π

{∫
|u|≤θ−δ

| · |du +

∫
|u|≥θ−δ

| · |du
}
.



Combining the lemmas in the previous section, taking
δ ∈ (0,min{ϵ, (H − ϵ)/3}), we have∫

|u|≤θ−δ

∣∣∣∣∣∫ e iuy(1 + y2)α(pθ(y) − qθ(y))dy
∣∣∣∣∣ du = o(θ2H).

On the other hand,∫
|u|≥θ−δ

∣∣∣∣∣∫ e iuy(1 + y2)αpθ(y)dy
∣∣∣∣∣ du

≤ θjδ
∫
|u|≥θ−δ

|u|j |E0[(1 + X2
θ)
αe iuXθ ]|du = O(θjδ)

for any j ∈N by Lemma. The remainder∫
|u|≥θ−δ

∣∣∣∣∣∫ e iuy(1 + y2)αqθ(y)dy
∣∣∣∣∣ du

is handled in the same manner. ////



Put option price expansion I

Denoting by pθ the density of Xθ as before,

p(Feσ0(θ)z , θ)

Fσ0(θ)
= e−rθ

∫ z

−∞

∫ ζ

−∞
pθ(x)dxeσ0(θ)ζdζ.

Lemma: Let qθ(x), θ > 0 be a family of functions on R. If

sup
x∈R

(1 + x2)α|pθ(x) − qθ(x)| = o(θβ)

for some α > 5/4 and β > 0, then for any z0 ∈ R,

p(Feσ0(θ)z , θ)

Fσ0(θ)
= e−rθ

∫ z

−∞

∫ ζ

−∞
qθ(x)dxeσ0(θ)ζdζ+ o(θβ)

uniformly in z ≤ z0.



Put option price expansion II
Proof: By the Cauchy-Schwarz inequality,

e−rθ
∫ z

−∞

∫ ζ

−∞
|pθ(x) − qθ(x)|dzeσ0(θ)ζdζ

≤ e−rθ
∫ z

−∞

√∫ ζ

−∞

dx
(1 + x2)2α−1

×

√∫ ζ

−∞
(1 + x2)2α−1|pθ(x) − qθ(x)|2dzeσ0(θ)ζdζ

≤ πe−rθ+σ0(θ)z sup
x∈R

(1 + x2)α|pθ(x) − qθ(x)|

×
∫ z

−∞

√∫ ζ

−∞

dx
(1 + x2)2α−1 dζ,

which is o(θβ) if α > 5/4. ////



Put option price expansion III
Theorem: Suppose we have (5) with qθ of the form

qθ(x) = ϕ(x)

1 − σ0(θ)

2
H1(x) + κ3(θ)(H3(x) − σ0(θ)H2(x))θH

+

(
κ4H4(x) +

κ3(θ)2

2
H6(x)

)
θ2H

,
where Hk is the k th Hermite polynomial :

H1(x) = x , H2(x) = x2−1, H3(x) = x3−3x , H4(x) = x4−6x2+3, . . .

Then, for any z0 ∈ R,

p(Feσ0(θ)z , θ)

Fe−rθσ0(θ)
=

Φ(z)eσ0(θ)z − Φ(z − σ0(θ))

σ0(θ)

+ ϕ(z)

κ3H1(z)eσ0(θ)zθH +

κ4H2(z) +
κ2

3

2
H4(z)

θ2H

+ o(θ2H)

uniformly in z ≤ z0, where κ3 = κ3(θ).



Implied volatility expansion

Theorem: Under the same condition as before,

σBS(
√
θz, θ) =κ2

1 +
κ3

κ2
zθH +

3κ2
3

2
− κ4 +

κ4 − 3κ2
3

κ2
2

z2

θ2H


+ o(θ2H)

when H < 1/2 and

= κ2

1 +
κ3

κ2
z
√
θ+

3κ2
3

2
− κ4 +

κ4 − 3κ2
3

κ2
2

+
κ3

2κ2

 z2

θ
+o(θ)

when H = 1/2, where κ2 = κ2(θ) = σ0(θ)/
√
θ and κ3 = κ3(θ).

Note that κ2(θ) =
√

the averaged forward variance.



Asymptotics for at-the-money skew and curvature
Theorem: Under the same condition as before,

∂kσBS(0, θ) = κ3(θ)θ
H−1/2 + o(θ2H−1/2),

∂2
kσBS(0, θ) = 2

κ4 − 3κ3(θ)2

κ2(θ)
θ2H−1 + κ3(θ)θ

H−1/2 + o(θ2H−1).

Proof: Combine the previous expansions and

∂kσBS(k , θ) =
Q(k ≥ σ0(θ)Xθ|F0) − Φ(f+(k , θ))√

θϕ(f+(k , θ))
,

∂2
kσBS(k , θ) =

pθ(k/σ0(θ))

σ0(θ)
√
θϕ(f+(k , θ))

− σBS(k , θ)∂k f−(k , θ)∂k f+(k , θ),

where

f±(k , θ) =
k√

θσBS(k , θ)
±
√
θσBS(k , θ)

2
.



The rough Bergomi model
Let ρt = ρ ∈ (−1,1) be a constant and

d log vt = ηdWH
t + deterministic drift,

where η > 0 is a constant and WH is a fractional Brownian
motion with the Hurst parameter H ∈ (0,1/2), given as

WH
t = cH

∫ t

−∞
(t − s)H−1/2 − (−s)H−1/2

+ dWs

with a normalizing constant cH > 0. Since vt is log-normally
distributed, (1) holds by Jensen’s inequality. We have

vt = v0(t)exp

ηH
√

2H
∫ t

0
(t − s)H−1/2dWs −

η2
H

2
t2H

 ,
where ηH = ηcH/

√
2H. Note that v0(t) is rough.



The Hermite polynomials

Let Hk , k = 0,1, . . . be the Hermite polynomials:

Hk (x) = (−1)k ex2/2 dk

dxk e−x2/2

and Hk (x ,a) = ak/2Hk (x/
√

a) for a > 0. As is well-known, we
have

exp
{

ux − au2

2

}
=

∞∑
k=0

Hk (x ,a)
uk

k !

and for any continuous local martingale M and n ∈N,

dL (n)
t = nL (n−1)

t dMt , (6)

where L (k) = Hk (M, ⟨M⟩) for k ∈N.



Time-change for the rBergomi model
Define Ŵ, Ŵ ′, B̂ by

Ŵt =
1
σ0(θ)

∫ τ−1(t)

0

√
v0(s)dWs , Ŵ ′

t =
1
σ0(θ)

∫ τ−1(t)

0

√
v0(s)dW ′

s

and B̂ = ρŴ +
√

1 − ρ2Ŵ ′, where

τ(s) =
1

σ0(θ)2

∫ s

0
v0(t)dt .

Then, (Ŵ , Ŵ ′) is a 2-dimensional Brownian motion under E0
and for any square-integrable function f ,∫ a

0
f(s)dWs = σ0(θ)

∫ τ(a)

0

f(τ−1(t))√
v0(τ−1(t))

dŴt .



Therefore,

Mθ = σ0(θ)

∫ 1

0
exp

θHF t
t −
η2

H

4
|τ−1(t)|2H

 dB̂t

where

F t
u = ηH

√
H
2
σ0(θ)

θH

∫ u

0

(τ−1(t) − τ−1(s))H−1/2√
v0(τ−1(s))

dŴs , u ∈ [0, t ].

Let
G(k)

t = Hk (F t
t , ⟨F t⟩t).

Then, we have

Mθ = σ0(θ)

∫ 1

0
exp

−η2
H

8
|τ−1(t)|2H

exp
{
θHF t

t −
θ2H

2
⟨F t⟩t

}
dB̂t

= σ0(θ)

∫ 1

0
exp

−η2
H

8
|τ−1(t)|2H

 ∞∑
k=0

G(k)
t
θHk

k !
dB̂t .



Stochastic expansion for the rBergomi model

Lemma: We have (2) with

M(0)
θ

= B̂1,

M(1)
θ

=

∫ 1

0
hθ(t)G

(1)
t dB̂t ,

M(2)
θ

=

∫ 1

0

hθ(t) − 1
θ2H + hθ(t)

G(2)
t

2

 dB̂t ,

M(3)
θ

= 2
∫ 1

0
F t

t dt ,

where

hθ(t) = exp

−η2
H

8
|τ−1(t)|2H

 .



Density expansion for the rBergomi model

Theorem: We have (5) with

qθ(x) = ϕ(x)

1 − σ0(θ)

2
H1(x) + κ3(θ)(H3(x) − σ0(θ)H2(x))θH

+

(
κ4H4(x) +

κ3(θ)2

2
H6(x)

)
θ2H

,
where

κ3(θ) = ρηH

√
H
2

1
θHσ0(θ)3

∫ θ

0

∫ t

0
(t − s)H−1/2

√
v0(s)dsv0(t)dt ,

κ4 =
(1 + 2ρ2)η2

HH

(2H + 1)2(2H + 2)
+
ρ2η2

HHβ(H + 3/2,H + 3/2)

2(H + 1/2)2 .



Brownian bridge
Since M(0)

θ
= B̂1, computing E0[M

(i)
θ
|M(0)
θ

= x] reduces to
compute expectations of iterated integrals of Brownian bridge.

Lemma :

Ê
[∫ 1

0

∫ t

0
f(s, t)dB̂sdt

]
= H1(x)

∫ 1

0

∫ t

0
f(s, t)dsdt ,

Ê
[∫ 1

0

∫ t

0
f(s, t)dB̂sdB̂t

]
= H2(x)

∫ 1

0

∫ t

0
f(s, t)dsdt ,

Ê

∫ 1

0

(∫ t

0
f(s, t)dB̂s

)2

dB̂t

 = H3(x)
∫ 1

0

(∫ t

0
f(s, t)ds

)2

dt

+ H1(x)
∫ 1

0

∫ t

0
f(s, t)2dsdt .

and...



Ê

∫ 1

0

(∫ 1

s
f(s, t)dB̂t

)2

ds


= H2(x)

∫ 1

0

(∫ 1

s
f(s, t)dt

)2

ds +

∫ 1

0

∫ 1

s
f(s, t)2dtds,

Ê

(∫ 1

0

∫ t

0
f(s, t)dB̂sdB̂t

)2 = H4(x)
(∫ 1

0

∫ t

0
f(s, t)dsdt

)2

+ H2(x)
∫ 1

0

(∫ t

0
f(s, t)ds +

∫ 1

t
f(t ,u)du

)2

dt

+

∫ 1

0

∫ t

0
f(s, t)2dsdt .



Concluding remarks

• There is no technical difficulty to go higher orders.
• The same approach works for the small vol-of-vol

perturbation.
• The rBergomi model explains the power law of volatility

skew (and curvature).
• When the forward variance curve is flat, an expansion of

the Forde-Zhang rate function of large deviation gives the
same expansion of the implied volatility. Cf. Bayer et al.

• When the forward variance curve is flat, the (formal) small
vol-of-vol (Bergomi-Guyon) expansion given by Bayer et
al. (2016) coincides with our expansion.


