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Existence of martingale couplings

Ω = Rd × Rd and X and Y are the two canonical random
variables Ω→ Rd , X : (x , y) 7→ x and Y : (x , y) 7→ y .

The set of all martingale coupling probability laws between
µ, ν ∈ P(Rd):

M(µ, ν) := {P ∈ P(Ω) : P ◦ X−1 = µ, P ◦ Y−1 = ν

and EP[Y |X ] = X}.

By (Strassen 1964), we have the following equivalence

M(µ, ν) 6= ∅ ⇐⇒ µ
convex
≤ ν

i.e. (ν − µ)[f ] ≥ 0 for any f convex.
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Potentials and irreducible components on R

Potential functions: powerful tools in dimension 1.

uν−µ(x) :=
∫
R |t − x |(ν − µ)(dt).

uν−µ ≥ 0.

For P ∈M(µ, ν),

uν−µ(x0) = 0 ⇐⇒ EP[|Y − x0|] = EP[|X − x0|]
⇐⇒ P[Y > x0|X ≤ x0] = 0.

Irreducible paving: {uν−µ(X ) > 0} = ∪
k∈N

]ak , bk [.

Irreducible component Ik :=]ak , bk [ (Beiglbock-Juillet
2012).

X ∈ Ik =⇒ Y ∈ cl Ik , M(µ, ν)-q.s.
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Link between potential and convex functions in R

C := {f : Rd → R, convex, and (ν − µ)[f ] ≤ 1}.
If d = 1, we have (ν − µ)[f ] =

∫
R

1
2uν−µ(x)f ′′(x)dx .

uν−µ > 0 on Ik : C is compact when restricted to Ik for
f ∈ C, as (ν − µ)[f ] ≤ 1.

To get compactness we need to ”anchor” the convex
function: fk(x) = f (x)− f (xk)−∇f (xk) · (x − xk) ≥ 0 for
some xk ∈ Ik .

Idea of doubling the variable:
Tf (x , y) := f (y)− f (x)−∇f (x) · (y − x) ≥ 0.

Tangent convex functions: T (µ, ν) := clT(C)
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Definition of the irreducible convex paving in Rd

For θ ∈ T (µ, ν), and P ∈M(µ, ν):

EP[θ(X ,Y )] ≤ 1.

Y ∈ domθ(X , ·), M(µ, ν)−q.s.

{domθ(x , ·), x ∈ Rd} is a partition of Rd .

For K convex G (K ) := dim(K ) + gK (K ), with gK
Gaussian measure on Aff(K ).

G in increasing and bounded.

Consider the minimization problem

inf
{
Eµ[G (K )] : K := K (X ) = domθ(X , ·)

for some θ ∈ T (µ, ν)
}
,
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Properties of the irreducible convex paving in Rd

Theorem

There is a µ-a.s. unique optimizer I : Rd →
◦
K to the

optimization problem, called irreducible convex paving map.
Moreover, we have the following properties:
I is universally measurable,

{
I (x), x ∈ Rd

}
is a partition of Rd

with X ∈ I (X ), and

Y ∈ cl I (X ), M(µ, ν)− q.s.
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Setwise duality

Proposition

We may find a probability measure P̂ ∈M(µ, ν) and
θ̂ ∈ T (µ, ν) such that for any P ∈M(µ, ν) and θ ∈ T (µ, ν),

suppPX ⊂ conv
(
supp P̂X

)
= cl I (X )

= cl dom θ̂(X , ·) ⊂ cl dom θ(X , ·),
µ− a.s.
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Characterization of the M(µ, ν)-polar sets

We also have the following characterization of M(µ, ν)−polar
sets. We denote by Nµ and Nν the collection of all negligible
sets for µ and ν, respectively.

Proposition

A subset N ∈ B(Ω), is M(µ, ν)−polar if and only if

N ⊂ {X ∈ Nµ} ∪ {Y ∈ Nν} ∪ {Y /∈ Jθ(X )}

for some Nµ ∈ Nµ, Nν ∈ Nν , and θ ∈ T (µ, ν).

Where Jθ(X ) := I (X ) ∪ domθ(X , ·) ∩ cl I (X ).
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Questions ?

Figure: An example of Optimal Transport in practice.
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