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Introduction Motivation

Motivation

In the article Stochastic Portfolio Theory: an Overview by R. Fernholz
and I. Karatzas the following question was raised:

Question

What, if any, is the connection between the theory of universal portfolios of
T.Cover (1991) (discrete time) and F.Jamshidian (1992) (continuous time)
and stochastic portfolio theory as initiated by R. Fernholz?

This questions stems from the fact that both theories ask for
preference-free and general recipes how to choose a good (at least in
the long run) long only portfolio among d assets.
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Introduction Cover’s universal portfolio - Idea

Cover’s universal portfolio - Overview

Cover’s insight reveals the phenomenon that the “wisdom of
hindsight” does not give any significant advantage as compared to a
properly chosen “universal” portfolio which is constructed in a
predictable way.

The relevant optimality criterion here is the asymptotic growth rate of
the portfolio

lim
T→∞

1

T
logVT ,

where (VT )T∈T denotes the wealth process and T stands either for N
(discrete time) or [0,∞) (continuous time).
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Introduction Cover’s universal portfolio - Idea

Toy example

Consider discrete time and denote by s = (s1, . . . , sd)∞t=0 a trajectory
of stock prices taking values in Rd

++.

Fix T ∈ N and think of an investor who at time T looks back and
asks which stock she should have bought at time t = 0 by investing
her initial endowment of 1 EUR and subsequently holding the stock.

Obvious solution to this problem: pick the stock i ∈ {1, . . . , d} which

maximizes the performance
s iT
s i0
.

It clearly also maximizes the normalized logarithmic return

1

T
[log(s iT )− log(s i0)] i = 1, . . . , d .

The “only” problem is, of course, that we have to make our choice at
time t = 0 instead of t = T .
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Introduction Cover’s universal portfolio - Idea

Toy example cont.
Remedy: simply divide at time t = 0 the initial endowment of 1 EUR
into d portions of 1

d . At time T your wealth equals

VT =
1

d

d∑
j=1

s jT

s j0
≥ 1

d

s iT
s i0
,

where again i denotes the stock which performed best during the
time interval [0,T ].

Passing again to normalized logarithmic returns we obtain

1

T
log(VT ) ≥ 1

T

[
log(s iT )− log(s i0)− log(d)

]
.

The difference between the retrospectively chosen portfolio and the
“universal portfolio” consisting of equally weighing the d stocks at
time t = 0 can thus be estimated by log(d)

T , which tends to zero as
T →∞.
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Introduction Cover’s setting

Cover’s setting

Model-free setting (no probability space) in discrete time t ∈ N.

Instead of only considering “pure” investments into one of the stocks as
benchmark, Cover considers all constant rebalanced portfolio strategies:

Let b = (b1, . . . , bd) be a fixed element of the d- dimensional closed simplex

∆̄d =

x ∈ Rd
+ |

d∑
j=1

x j = 1

 .

We denote by ∆d the interior of the simplex.

The corresponding portfolio wealth process (V b
t )∞t=0 is given by

V b
t+1(s)

V b
t (s)

=
d∑

j=1

bj
s jt+1

s jt
, V b

0 = 1

for each scenario s = ((s jt )dj=1)∞t=0 of strictly positive numbers corresponding
to stock prices.
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Introduction Cover’s setting

Best retrospectively chosen portfolio

For fixed T , define V ∗T by

V ∗T (s) = sup
b∈∆̄d

V b
T (s),

which is a function depending on the scenario s = (s1
t , . . . , s

d
t )Tt=0.

The optimizer is denoted by b∗ and is refereed to as best
retrospectively chosen portfolio.

Cover’s goal was to construct a “universal” portfolio chosen in a
predictable way which performs as good as (V ∗T )∞T=0 asymptotically
for T →∞.
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Introduction Cover’s setting

Cover’s universal portfolio

For a probability measure ν on ∆̄d define portfolio weights as

bνT =

∫
∆̄d bV

b
Tdν(b)∫

∆̄d V b
Tdν(b)

.

which yield the following wealth process:

Vt(ν)(s) =

∫
∆̄d

V b
t (s)dν(b).

Thus, Cover’s universal portfolio consists in investing the portion dν(b) of
one’s wealth into the constant rebalanced portfolio with weights b.

Note that the universal portfolio strategy at each time T is built by
averaging with a sort of posterior distribution of the form

νT (A) =

∫
A
V b
Tdν(db)∫

∆̄d V b
Tdν(b)

with prior distribution ν on ∆d and the wealth at time T interpreted as
likelihood function.
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Introduction Cover’s setting

Cover’s original result

Theorem (Cover (91))

Let ν be a probability measure on ∆̄d with full support. Then

lim
T→∞

1

T
(log(V ∗T (s))− log(VT (ν)(s))) = 0

for all trajectories s = (s1
t , . . . , s

d
t )∞t=0 for which there are constants

0 < c ≤ C <∞ such that

c ≤
s jt+1

s jt
≤ C , for all j = 1, . . . , d and all t ∈ N.
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Introduction Cover’s setting

Extensions, Improvements and an (incomplete) literature
overview

Quantitative estimates when the distribution ν is specified.

Relaxation of the boundedness of the price relatives (Cover and Ordentlich
(96), Blum and Kalai (99)): For the uniform distribution on ∆̄d , they obtain

(log(VT (ν)(s))− log(V ∗T (s))) ≥ −(d − 1) log(T − 1).

Similar results in continuous time by Jamshidian (1992) for diffusions.

Other parametric families instead of the constantly rebalanced one.

Recent results by Wong (2015) on the nonparametric family of long only
functionally generated portfolios of SPT in discrete time.

Recently universal portfolio strategies have been studied extensively in an
algorithmic and machine learning framework (Hazan and Kale (2015)).
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Introduction Stochastic portfolio theory

The setting of stochastic portfolio theory
Stochastic portfolio theory (SPT) is a theory for analyzing stock
market structures and portfolio behavior and was introduced R.
Fernholz.

Main quantity of interest: Relative performance with respect to the
market portfolio.

Economically speaking, this amounts to take the market portfolio∑d
j=1 s

j as numéraire.

One associates to the stock prices (s1, . . . , sd) ∈ Rd
++ the vector of

market weights (µ1, . . . , µd) ∈ ∆d by normalizing by the total market
capitalization

∑d
j=1 s

j i.e.

(µ1, . . . , µd) =

(
s1∑d
j=1 s

j
, . . . ,

sd∑d
j=1 s

j

)
.

Christa Cuchiero (University of Vienna) Cover’s portfolio, SPT, numéraire portfolio Paris, Jan. 2017 11 / 27



Introduction Stochastic portfolio theory

Portfolio maps and relative wealth processes

A long only portfolio map is a measurable function

π : ∆d → ∆̄d

which associates to the current market weights µt = (µ1
t , . . . , µ

d
t ) the

weights (π(µt) = (π1(µt), . . . , π
d(µt)) corresponding to the

proportion of current wealth invested in the i th asset.

The constant rebalanced portfolio strategies correspond to the
constant functions π : ∆d → ∆̄d .

Relative wealth process: Y π = Vπ

Vµ

I Discrete time (model-free):
Yπ
t+1

Yπ
t

=
∑d

j=1 π
j(µt)

µj
t+1

µj
t

I Continuous time (at least in a semimartingale setting) :
dYπ

t

Yπ
t

=
∑d

j=1 π
j(µt)

dµj
t

µj
t
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Introduction Goal of this talk

Program of the remainder of this talk

Consider instead of the constantly rebalanced portfolios larger classes
of non-parametric portfolio maps π : ∆d → ∆̄d .

Compare

1 the best retrospectively chosen portfolio in this class of portfolio maps;

2 the analog of Cover’s universal portfolio in this setting;

3 the log-optimal portfolio within this class portfolio maps.

Establish equal asymptotic growth rates for ergodic Markovian models
for the market weights µ both in discrete and continuous time.

“Modelfree” setup for comparing (1) and (2)
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Comparing (1) and (2) General Setup for continuous and discrete time

“Modelfree” setup for comparing (1) and (2) - Ingredients

Assumptions A

(G, ‖ · ‖): compact set of functions generating the set of portfolio
maps

FG = {π : ∆d → ∆̄d , x 7→ π(x) = Π(G )(x) |G ∈ G}

via some function Π : G → FG. The relative wealth corresponding to
Π(G ) is denoted by Y Π(G) = Y G .

For G ∈ G and a given trajectory (µt)t∈T taking values in ∆d , the
wealth process (Y G

t )t∈T can be defined in a pathwise way, which is of
course only an issue in continuous time.

For every T , G 7→ Y G
T is continuous.

ν: Borel probability measure with full support on G
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Comparing (1) and (2) General Setup for continuous and discrete time

“Modelfree” setup for comparing (1) and (2) - Types of
portfolios

The best retrospectively chosen portfolio: Define for each T and a
given trajectory (µt)t∈T

Y ∗T = sup
G∈G

Y G
T .

By compactness of G and continuity of G 7→ Y G
T the optimizer exists

and is denoted by G ∗T .

The universal portfolio: Define ν̃ = Π∗ν and

πνT =

∫
FG π(µT )Y π

T d ν̃(π)∫
FG Y

π
T d ν̃(π)

,

so that the relative wealth achieved by investing according to πν is
given by

YT (ν) =

∫
G
Y G
T dν(G ).
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Comparing (1) and (2) General Setup for continuous and discrete time

Comparison between the best retrospectively and universal
portfolio

The analog of Cover’s Theorem reads in the present setting as follows:

Theorem (C., Schachermayer, Wong (2016))

Fix a Borel probability measure ν with full support on G and consider a
trajectory (µt)t∈T taking values in ∆d . Suppose that Assumptions A holds
and that for every ε > 0 there exists some δ > 0 such that

1

T
log(Y G

T ) ≥ 1

T
log(Y ∗T )− ε

for all T ∈ T and G ∈ G such that ‖G − G ∗T‖ ≤ δ. Then

lim
T→∞

1

T
(log(Y ∗T )− log(YT (ν))) = 0.
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Comparing (1) and (2) Discrete time

Portfolio maps in discrete time

One possible choice for G ≡ FG in discrete time is the following set of
functions:

LM : set of all Lipschitz functions ∆d → ∆̄d
M−1 with Lipschitz

constant M > 0, which pertains, e.g., to the metric defined by the
norm ‖ · ‖1 on ∆̄d .

Here ∆̄d
ε denotes the set of p ∈ ∆d verifying pj ≥ ε

d , for j = 1, . . . , d .

Corollary (C., Schachermayer, Wong (2016))

Fix a Borel probability measure ν with full support on LM . For every
individual sequence (µt)

∞
t=0 in ∆d we have

lim
T→∞

1

T
(log(Y ∗,MT )− log(YM

T (ν))) = 0.
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Comparing (1) and (2) Continuous time

Portfolio maps in continuous time - functionally generated
portfolios
We consider the following set of concave functions for some fixed M > 0
and 0 < α ≤ 1,

GM,α =
{
G ∈ C 2,α(∆̄d), concave such that‖G‖C2,α ≤ M

and G ≥ 1

M

}
,

where C 2,α(∆̄d) denotes the Hölder space of 2-times differentiable
functions from ∆̄d → R whose derivatives are α-Hölder continuous. That
is,

C 2,α(∆̄d) = {G ∈ C 2(∆̄d) | ‖G‖C2,α <∞},
where

‖G‖C2,α = max
|k|≤2
‖DkG‖∞ + max

|k|=2
sup
x 6=y

|DkG (x)− DkG (y)|
‖x − y‖α

with k denoting a multiindex.
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Comparing (1) and (2) Continuous time

Functionally generated portfolios as in SPT cont.

Lemma

Let M, α > 0 be fixed. Then the set GM,α is compact with respect to
‖ · ‖C2,0 .

To the set of generating functions GM,α we associate now the set of
functionally generated portfolios FGM,α defined via

FGM,α =

{
π : ∆d → ∆̄d ,

x 7→ πi (x) = x i

D iG (x)

G (x)
+ 1−

d∑
j=1

D jG (x)

G (x)
x j

 , |G ∈ GM,α

}
.
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Comparing (1) and (2) Continuous time

The “modelfree” Master equation
Under the assumption

Assumption ((QV))

The path µ admits a continuous S+
d -valued quadratic variation [µ] along (Tn) in

the sense of Foellmer, i.e., for any 1 ≤ i , j ≤ d and all t ≥ 0 the sequence∑
s∈Tn,s≤t

(µi
s′ − µi

s)(µj
s′ − µ

j
s)

converges to a finite limit, denoted [µi , µj ]t , such that t 7→ [µi , µj ]t is continuous.

and by applying Foellmer’s functional Itô calculus we get the following pathwise
version of Fernholz’s master equation, which also follows from Schied et al:

Y G
T =

G (µT )

G (µ0)
eg([0,T ]), 0 ≤ T <∞,

where g(dt) = − 1
2G(µt)

∑
i,j D

ijG (µt)d [µi , µj ]t .
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Comparing (1) and (2) Continuous time

Comparison between best retrospectively and universal
portfolio

The analog of Cover’s Theorem reads in the present setting as follows:

Corollary (C., Schachermayer, Wong (2016))

Let M, α > 0 be fixed and let (µt)t≥0 be a continuous path satisfying
Assumption (QV) such that for all i ∈ {1, . . . , d}

lim
T→∞

1

T
[µi , µi ]T <∞.

Consider a probability measure ν on GM,α with full support. Then

lim
T→∞

1

T
(logY ∗,M,α

T − logYM,α
T (ν)) = 0.
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Relation to the log optimal portfolio Definition

Comparison with the log-optimal portfolio

By definition the log-optimal portfolio requires a stochastic model for µ.

Assumption ((D) - Discrete time)

The process µ is a time homogeneous, ergodic Markov process on ∆d .

Assumption ((C))

The process µ is a time-homogeneous ergodic Markovian Itô-diffusion on ∆d of
the form

µt = µ0 +

∫ t

0

c(µs)λ(µs)dt +

∫ t

0

√
c(µs)dWs , µ0 ∈ ∆d ,

where W denotes a d-dimensional Brownian motion, λ a measurable function
from ∆d → Rd , c a measurable function from ∆d → Sd

+, and the following

integrability condition
∫ T

0
λ>(µt)c(µt)λ(µt)dt <∞ P-a.s.
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Relation to the log optimal portfolio Definition

The log optimal portfolio

The log-optimal portfolio in the set LM (GM,α respectively). Define
the log-optimal portfolio among LM (GM,α respectively) by

ŶM
T = sup

π∈LM
E[log(Y π

T )], and ŶM,α
T = sup

G∈GM,α
E[log(Y G

T )],

respectively. Note that the optimizer does not depend on T due to
the time homogenous Markov property of µ.

The global long only log-optimal portfolio: The global log-optimal
portfolio over all long only strategies is defined analogously and
denoted via Ŷ .
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Relation to the log optimal portfolio Discrete time

Equality of the asymptotic performance - discrete time

Theorem (C., Schachermayer, Wong (2016))

Let µ = (µt)
∞
t=0 be a ∆d -valued stochastic process satisfying Assumption

D and the assumption of a finite expected yield of the log-optimal
portfolio. Then we have the following equality P-a.s.

lim inf
T→∞

1

T
log(Y ∗,MT ) = lim inf

T→∞

1

T
log(YM

T (ν)) = lim
T→∞

1

T
log(ŶM

T ).

In addition, the first equality holds true, for all sequences (µt(ω))∞t=0 in
∆d .

Remark

Due to the assumption of ergodicity the above asymptotic growth rates
are equal to a constant. This can be weakened as long as
limT→∞

1
T log(ŶM

T ) exists and some integrability conditions are satisfied.
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Relation to the log optimal portfolio Discrete time

Equality of the asymptotic performance - discrete time

To formulate a result not depending explicitly on the constant M, we
define a universal portfolio Ŷ (ν) = (Ŷt(ν))∞t=0 in the following way. For
M = 1, 2, 3, . . . choose a measure νM on LM with full support. Define
ν =

∑∞
M=1 2−MνM and the process Y (ν) by

Yt(ν) =

∫
⋃∞

M=1 LM
Y π
t dν(π), t ∈ N.

Corollary

Under the assumptions of the above Theorem we have P-a.s.

lim
M→∞

lim
T→∞

1

T
log(Y ∗,MT ) = lim

T→∞

1

T
log(YT (ν)) = lim

T→∞

1

T
log(ŶT ).
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Relation to the log optimal portfolio Continuous time

Equality of the asymptotic growth rates
Theorem (C., Schachermayer, Wong (2016))

Let M, α > 0 be fixed and let (µt)t≥0 be a stochastic process satisfying
Assumption (C ). Moreover, suppose that∫

∆d

c ii (x)ρ(dx) <∞, for all i ∈ {1, . . . , d},∫
∆d

max
i∈{1,...,d}

|(c(x)λ(x))i |ρ(dx) <∞.

Then

lim inf
T→∞

1

T
logY ∗,M,αT = lim inf

T→∞

1

T
logYM,α

T (ν) = lim
T→∞

1

T
log ŶM,α

T , P-a.s.

A result independent of M yielding equality with the global log optimal portfolio
can be achieved whenever it is functionally generated by some concave function
G ∈ C 2(∆̄d).
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Relation to the log optimal portfolio Continuous time

Conclusions

Establish a link between stochastic portfolio theory and Cover’s
universal portfolio by replacing Cover’s constantly rebalanced
portfolios by more general portfolio maps π : ∆d 7→ ∆̄d .

This yields equality of the asymptotic growth rates of

1 the best retrospectively chosen portfolio;

2 the analog of Cover’s universal portfolio in this setting;

3 the log-optimal portfolio within this class portfolio maps (which is the
gobal log-optimal under certain conditions);

for ergodic Markovian models for the market weights µ, both in
discrete and continuous time.

Thank you for your attention!
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for ergodic Markovian models for the market weights µ, both in
discrete and continuous time.

Thank you for your attention!
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