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Model-independent/Robust bounds for option prices

Aim: make statements about the price of options given very mild
modelling assumptions
Incorporate market information by supposing the prices of vanilla call
options are known
Typically want to know the largest/smallest price of an exotic option
(Lookback option, Barrier option, Variance option, Asian option,. . . )
given observed call prices, but with (essentially) no other assumptions
on behaviour of underlying
This talk: options on Leveraged Exchange Traded Funds (LETF)
Why? Heavily traded, and interesting features to the solution!
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Financial Setting

Option priced on an asset (St)t∈[0,T ], option payoff F ((St)t∈[0,T ])

Dynamics of S unspecified, but suppose paths are continuous, and we
see prices of call options at all strikes K and at maturity time T

Assume for simplicity that all prices are discounted — this won’t affect
our main results
Under risk-neutral measure, S should be a (local-)martingale, and we
can recover the law of ST at time T , µ say, from call prices C (K )
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Leveraged Exchange Traded Fund (LETF)

ETF attempts to match returns on a benchmark asset/index 1:1
LETF attempts to match returns on a benchmark asset/index up to
factor, e.g. 2:1 — 10% increase in index → 20% increase in LETF
Over time, e.g. daily rebalancing leads to tracking errors
Dynamics of the LETF with leverage ratio β > 1 are given by

Lt = Sβt exp
(
−β(β − 1)

2
Vt

)
,

Vt is the accumulated quadratic variation of log St
Eliminate Vt by time change, τt := inf{s ≥ 0 : Vs = t} and
Xt := Sτt . So,

d〈X 〉t = d〈S〉τt = S2
τtdVτt = X 2

t dt

and Xt is a geometric Brownian motion (GBM)
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LETF model-independent pricing problem

Want to consider (maximum) price of call option on LETF under
assumption that law of ST (under Q) is known, but no other modelling
assumption. Corresponds to:

Main Problem
Find

sup
τ

E
[(

X β
τ exp

(
−β(β − 1)

2
τ

)
− k

)
+

]
, (LOptSEP)

over stopping times τ such that Xτ ∼ µ, where X is a GBM

Also: is there an arbitrage if the price of the option on the LETF
exceeds this?
This is a form of Optimal Skorokhod Embedding Problem (OptSEP)
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Existing Literature

Rich literature on these problems:
Starting with Hobson (’98) connection with Skorokhod Embedding
problem → explicit optimal solutions for many different payoff
functions (Brown, C., Dupire, Henry-Labordère, Hobson, Klimmek,
Obłój, Rogers, Spoida, Touzi, Wang,. . . )
Recently, model-independent duality has been proved by
Dolinsky-Soner (’14):

sup
Q:ST∼µ

EQ[XT ] = price of cheapest super-replication strategy

Here the super-replication strategy will use both calls and dynamic
trading in underlying, and is model-independent. The sup is taken
over measures Q for which S is a martingale. (See also Hou-Obłój and
Beiglböck-C.-Huesmann-Perkowski-Prömel)
The problem of finding the maximising martingale S is commonly
called the Martingale Optimal Transport problem (MOT)
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Geometric Characterisation via BCH

Key observation of Beiglböck, C., Huesmann [BCH] (2016):

Solutions to (OptSEP) are often characterised
by simple geometric criteria

Geometric criteria typically determined by the monotonicity principle
([BCH]):

if I am better off ‘stopping’ a currently running path, and
‘transplanting’ the tail onto another stopped path (stopping
at the same level), my solution is not optimal

Monotonicity principle can be used to show that optimisers of
(OptSEP) have a certain geometric form
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Form of Optimiser: K -cave barrier

Recall, problem is to maximise E[(Mτ − k)+], where
Mt = X β

t e−β(β−1)t/2 is a martingale. Intuitively, aim to maximise
local time of M at k
Can compute Mt = k when K (Xt) = t, K (x) = 2

β(β−1) ln( x
β

k )

A K -cave barrier is a subset R of R+ × R+ of the form
R = {(t, x) : t ≤ `(x) or t ≥ r(x)}, where `(x) ≤ K (x) ≤ r(x)

Similar concept (cave barrier) appeared in [BCH] (K = const)

Theorem
There exists an optimiser to (LOptSEP) which is of the form

τR := inf{t > 0 : (t,Xt) ∈ R}

where R is a K -cave barrier.
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K -cave barriers

τR

l(Xt) r(Xt)

K(Xt)

t

Xt
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(Non-)uniqueness of Barriers

Normally, at this point, a simple argument essentially due to Loynes
would imply that there is a unique K -cave barrier with the right
stopping distribution, which would then be the optimiser.
However, for the K -cave barriers, there are generally multiple K -cave
barriers which embed the same distribution; consider 3-atom
measures. Crucial question:

How to identify the optimal K -cave barrier?
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PDE Heuristics for the Dual Solution

We expect the Dual solution (superhedging portfolio) to take the
form: ∃G , λ such that

G (t, x) + λ(x) ≥ F (t, x),

where λ represents a portfolio of calls, F is the payoff of the option,
and γ is the proceeds of a dynamic trading strategy in the underlying.
We argue heuristically, inspired by arguments of Henry-Labordère:
write Fλ(t, x) = F (t, x)− λ(x). Then we require:

LG :=
x2

2
∂2
xG + ∂tG ≤ 0 and G ≥ Fλ ∀(t, x)

and expect equality in PDE in R{, and G = Fλ in R.
Also conjecture smooth fit: ∂tG = ∂tF

λ = ∂tF on boundaries

=⇒ M := ∂tG solves LM = 0 in R{ and M = ∂tF on ∂R
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PDE Heuristics for the Dual Solution

In particular, we get: M(t, x) = E(t,x)[∂tF (XτR , τR)], and integrating,
we see that

G (t, x) =

∫ r(x)

t
M(s, x) ds − Z (x)

for some function Z .
In fact, Z can be chosen (uniquely up to affine functions) in such a
way to make G a martingale in R{.
Now G (t, x) ≥ Fλ(t, x) at t = `(x), t = r(x) implies that:

λ(x) ≥ Z (x) +max{ 0︸ ︷︷ ︸
t=r(x)

, F (`(x), x)−
∫ r(x)

`(x)
M(s, x) ds︸ ︷︷ ︸

:=Γ(x)
t=`(x)

}
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Γ-condition: Γ > 0

tr(x)l(x) K(x)

F (t, x)

G(x, t) + H(x)|Γ(x)|

Lemma (Easy)
Suppose R is a K -cave barrier which embeds µ, and such that Γ(x) = 0 for
all x . Then τR is an optimiser of (LOptSEP).

Theorem (Hard)
There exists a K -cave barrier R which embeds µ, and such that Γ(x) = 0
for all x .
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Dual Feasibility

First step to proving the results:

Theorem
The dual solution described above is indeed a dual solution (i.e. G is a
martingale for some suitable Z ).

Shown using essentially probabilistic techniques
NB: No ‘explicit’ form for Z
Clearly Γ = 0 is then a sufficient condition =⇒ primal = dual
But: Not enough for theorem... Know (e.g. Dolinsky & Soner) that no
duality gap, but don’t know optimal dual solution of the form above
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Discretisation of Problem

Idea: Take the original problem, and discretise time and space suitably
(Random walk converging to the original Brownian motion)
Can formulate the original problem in the discrete setting and
formulate (LOptSEP) as a (countably infinite) linear programming
problem
Strong duality holds (in an appropriate sense) for the discretised
problem, and can show existence of dual solutions, and natural
condition corresponding to Γ = 0
In the limit, exists optimal barrier, and embedding, and can make
sense of Γ = 0 condition

=⇒ Theorem holds
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Conclusions

Formulated the model-independent pricing problem for call on a
Leveraged Exchange Traded Fund
Corresponds to an interesting form of embedding problem: geometric
characterisation does not guarantee uniqueness
Need an additional condition, based on dual solution to determine
optimal stopping region
Proof of optimiser based on discretisation and
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