Evolution of the Wasserstein distance between the marginals of two Markov processes

Jacopo Corbetta (École des Ponts - ParisTech)

Joint work with: Aurélien Alfonsi and Benjamin Jourdain

January 10, 2017

The Wasserstein distance

Definition

The ϱ -Wasserstein distance between two probability measures P and \widetilde{P} on \mathbb{R}^d is given by

$$W_{\varrho}(P,\widetilde{P}) = \left(\inf_{\pi \in \Pi(P,\widetilde{P})} \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^{\varrho} \ \pi(\mathrm{d}x,\mathrm{d}y)\right)^{\frac{1}{\varrho}}$$

The Wasserstein distance

Definition

The ϱ -Wasserstein distance between two probability measures P and \widetilde{P} on \mathbb{R}^d is given by

$$W_{\varrho}(P,\widetilde{P}) = \left(\inf_{\pi \in \Pi(P,\widetilde{P})} \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^{\varrho} \ \pi(\mathrm{d}x,\mathrm{d}y)\right)^{\frac{1}{\varrho}}$$

Dual Representation

$$W_{\varrho}^{\varrho}(P,\widetilde{P}) = \sup \left\{ -\int_{\mathbb{R}^d} \phi(x) P(\mathrm{d}x) - \int_{\mathbb{R}^d} \widetilde{\phi}(y) \widetilde{P}(\mathrm{d}y) \right\}$$

A couple $(\psi, \widetilde{\psi})$ obtaining the sup is called Kantorovich potentials.

A generic heuristic formula

Let $\{X_t\}_{t\geq 0}$ and $\{\widetilde{X}_t\}_{t\geq 0}$ be two \mathbb{R}^d -valued Markov processes. Then

$$W_{\varrho}^{\varrho}(P_t, \widetilde{P}_t) = -\int_{\mathbb{R}^d} \psi_t(x) P_t(\mathrm{d}x) - \int_{\mathbb{R}^d} \widetilde{\psi}_t(y) \widetilde{P}_t(\mathrm{d}y)$$

A generic heuristic formula

Let $\{X_t\}_{t\geq 0}$ and $\{\widetilde{X}_t\}_{t\geq 0}$ be two \mathbb{R}^d -valued Markov processes. Then

$$W_{\varrho}^{\varrho}(P_t, \widetilde{P}_t) = -\int_{\mathbb{R}^d} \psi_t(x) P_t(\mathrm{d}x) - \int_{\mathbb{R}^d} \widetilde{\psi}_t(y) \widetilde{P}_t(\mathrm{d}y)$$

For all 0 < t

$$\frac{\mathrm{d}}{\mathrm{d}t}W_{\varrho}^{\varrho}(P_t,\widetilde{P}_t) = -\int_{\mathbb{R}^d} L\psi_t(x)P_t(\mathrm{d}x) - \int_{\mathbb{R}^d} \widetilde{L}\,\widetilde{\psi}_t(x)\widetilde{P}_t(\mathrm{d}x)\,.$$

A generic heuristic formula

Let $\{X_t\}_{t\geq 0}$ and $\{\widetilde{X}_t\}_{t\geq 0}$ be two \mathbb{R}^d -valued Markov processes. Then

$$W_{\varrho}^{\varrho}(P_t, \widetilde{P}_t) = -\int_{\mathbb{R}^d} \psi_t(x) P_t(\mathrm{d}x) - \int_{\mathbb{R}^d} \widetilde{\psi}_t(y) \widetilde{P}_t(\mathrm{d}y)$$

For all 0 < t

$$\frac{\mathrm{d}}{\mathrm{d}t}W_{\varrho}^{\varrho}(P_t,\widetilde{P}_t) = -\int_{\mathbb{R}^d} L\psi_t(x)P_t(\mathrm{d}x) - \int_{\mathbb{R}^d} \widetilde{L}\,\widetilde{\psi}_t(x)\widetilde{P}_t(\mathrm{d}x)\,.$$

Integral formulation: for all $0 \le s \le t$

$$\begin{split} W_{\varrho}^{\varrho}(P_{t},\widetilde{P}_{t}) - W_{\varrho}^{\varrho}(P_{s},\widetilde{P}_{s}) &= \\ &- \int_{s}^{t} \left[\int_{\mathbb{R}^{d}} L\psi_{r}(x) P_{r}(\mathrm{d}x) + \int_{\mathbb{R}^{d}} \widetilde{L} \, \widetilde{\psi}_{r}(x) \widetilde{P}_{r}(\mathrm{d}x) \right] \mathrm{d}r \,. \end{split}$$

Formal proof

For every $s, t \ge 0$

$$W_{\varrho}^{\varrho}(P_{s},\widetilde{P}_{s}) \geq -\int_{\mathbb{R}^{d}} \psi_{t}(x) P_{s}(\mathrm{d}x) - \int_{\mathbb{R}^{d}} \widetilde{\psi}_{t}(x) \widetilde{P}_{s}(\mathrm{d}x).$$

Formal proof

For every $s, t \ge 0$

$$W_{\varrho}^{\varrho}(P_{s},\widetilde{P}_{s}) \geq -\int_{\mathbb{R}^{d}} \psi_{t}(x) P_{s}(\mathrm{d}x) - \int_{\mathbb{R}^{d}} \widetilde{\psi}_{t}(x) \widetilde{P}_{s}(\mathrm{d}x).$$

In particular

$$\begin{split} \int_{\mathbb{R}^d} \psi_s(x) (P_s(\mathrm{d}x) - P_t(\mathrm{d}x)) + \int_{\mathbb{R}^d} \widetilde{\psi}_s(x) (\widetilde{P}_s(\mathrm{d}x) - \widetilde{P}_t(\mathrm{d}x)) \\ & \leq W_\varrho^\varrho(P_t, \widetilde{P}_t) - W_\varrho^\varrho(P_s, \widetilde{P}_s) \\ & \leq \int_{\mathbb{R}^d} \psi_t(x) (P_s(\mathrm{d}x) - P_t(\mathrm{d}x)) + \int_{\mathbb{R}^d} \widetilde{\psi}_t(x) (\widetilde{P}_s(\mathrm{d}x) - \widetilde{P}_t(\mathrm{d}x)) \,. \end{split}$$

Formal proof (2)

$$\int_{\mathbb{R}^d} \psi_t(x) (P_s(\mathrm{d}x) - P_t(\mathrm{d}x)) = -\int_s^t \int_{\mathbb{R}^d} L \psi_t(x) P_r(\mathrm{d}x) \mathrm{d}r$$

Formal proof (2)

$$\int_{\mathbb{R}^d} \psi_t(x) (P_s(\mathrm{d}x) - P_t(\mathrm{d}x)) = -\int_s^t \int_{\mathbb{R}^d} L \psi_t(x) P_r(\mathrm{d}x) \mathrm{d}r$$

$$\frac{1}{h} \Big(W_{\varrho}^{\varrho}(P_{t+h}, \widetilde{P}_{t+h}) - W_{\varrho}^{\varrho}(P_{t}, \widetilde{P}_{t}) \Big) \ge \\
\ge \frac{1}{h} \left(- \int_{t}^{t+h} \int_{\mathbb{R}^{d}} L\psi_{t}(x) P_{r}(\mathrm{d}x) \mathrm{d}r - \int_{t}^{t+h} \int_{\mathbb{R}^{d}} \widetilde{L} \widetilde{\psi}_{t}(x) P_{r}(\mathrm{d}x) \mathrm{d}r \right)$$

Formal proof (2)

$$\int_{\mathbb{R}^d} \psi_t(x) (P_s(\mathrm{d}x) - P_t(\mathrm{d}x)) = -\int_s^t \int_{\mathbb{R}^d} L \psi_t(x) P_r(\mathrm{d}x) \mathrm{d}r$$

$$\frac{1}{h} \Big(W_{\varrho}^{\varrho}(P_{t+h}, \widetilde{P}_{t+h}) - W_{\varrho}^{\varrho}(P_{t}, \widetilde{P}_{t}) \Big) \ge \\
\ge \frac{1}{h} \left(- \int_{t}^{t+h} \int_{\mathbb{R}^{d}} L\psi_{t}(x) P_{r}(\mathrm{d}x) \mathrm{d}r - \int_{t}^{t+h} \int_{\mathbb{R}^{d}} \widetilde{L}\widetilde{\psi}_{t}(x) P_{r}(\mathrm{d}x) \mathrm{d}r \right)$$

Taking the limit for $h \to 0^+$

$$\frac{\mathrm{d}}{\mathrm{d}t^{+}}W_{\varrho}^{\varrho}(P_{t},\widetilde{P}_{t})\geq-\int_{\mathbb{R}^{d}}L\psi_{t}(x)P_{t}(\mathrm{d}x)-\int_{\mathbb{R}^{d}}\widetilde{L}\,\widetilde{\psi}_{t}(x)\widetilde{P}_{t}(\mathrm{d}x)$$

In the same way:

$$\frac{\mathrm{d}}{\mathrm{d}t^{-}}W_{\varrho}^{\varrho}(P_{t},\widetilde{P}_{t}) \leq -\int_{\mathbb{R}^{d}}L\psi_{t}(x)P_{t}(\mathrm{d}x) - \int_{\mathbb{R}^{d}}\widetilde{L}\,\widetilde{\psi}_{t}(x)\widetilde{P}_{t}(\mathrm{d}x).$$

Main Issues

Technical problems:

- ψ_t , $L\psi_t$ integrability with respect to P_s .
- $ightharpoonup r\mapsto W^\varrho_\varrho(P_r,\widetilde{P}_r)$ differentiability.

Pure jump: $Lf(x) = \lambda(x) \left(\int_{\mathbb{R}^d} k(x, dy) \left(f(y) - f(x) \right) \right)$

Theorem

Assume that

- $\sup_{x \in \mathbb{R}^d} \max(\lambda(x), \widetilde{\lambda}(x)) < \infty$
- $t\mapsto \mathrm{E}[|X_t|^{arrho(1+arepsilon)}+|\widetilde{X}_t|^{arrho(1+arepsilon)}]$ is locally bounded.

Then

- ▶ $t \mapsto \int_{\mathbb{R}^d} |L\psi_t(x)| P_t(\mathrm{d}x) + \int_{\mathbb{R}^d} |\widetilde{L}\widetilde{\psi}_t(x)| \widetilde{P}_t(\mathrm{d}x)$ is locally bounded
- ▶ $t \mapsto W_{\varrho}^{\varrho}(P_t, P_t)$ is locally Lipschitz on $(0, +\infty)$ and for almost every $t \in (0, \infty)$

$$\frac{\mathrm{d}}{\mathrm{d}t}W_{\varrho}^{\varrho}(P_t,\widetilde{P}_t) = -\int_{\mathbb{R}^d} L\psi_t(x)P_t(\mathrm{d}x) - \int_{\mathbb{R}^d} \widetilde{L}\,\widetilde{\psi}_t(x)\widetilde{P}_t(\mathrm{d}x).$$

• for every $t \ge 0$ the integral formula holds true.

◆ロ > ◆昼 > ◆ き > ◆き > き め < ○</p>

Piecewise Deterministic Markov Processes

$$Lf(x) = V(x)\nabla f(x) + \lambda(x)\left(\int_{\mathbb{R}^d} k(x, dy)(f(y) - f(x))\right).$$

The result still holds true

Piecewise Deterministic Markov Processes

$$Lf(x) = V(x)\nabla f(x) + \lambda(x)\left(\int_{\mathbb{R}^{\frac{1}{2}}} k(x, dy)(f(y) - f(x))\right).$$

The result still holds true but:

- we have to restrict on the real line;
- more regularity on the marginals is required.

Thank you for your attention