INSIGHT.DATA.CLARITY.

Non-linearities and dependences in factor modeling

The case for the volatilities of factors in stock returns

Rémy Chicheportiche with Jean-Philippe Bouchaud
12 Jan. 2017
insight.data.clarity.
(1) Modeling stock returns dependences

- Factor models and linear correlations
- Non-linearities
- Description of the non-linear model

Empirics: parameters estimation

- The data: range and properties
- Parameters of the stochastic volatility of the factorsConclusion
(1) Modeling stock returns dependences
- Factor models and linear correlations
- Non-linearities
- Description of the non-linear model
(2) Empirics: parameters estimation
- The data: range and properties
- Parameters of the stochastic volatility of the factorsConclusion
(1) Modeling stock returns dependences
- Factor models and linear correlations
- Non-linearities
- Description of the non-linear model
(2) Empirics: parameters estimation
- The data: range and properties
- Parameters of the stochastic volatility of the factors
(3) Conclusion
(1) Modeling stock returns dependences
- Factor models and linear correlations
- Non-linearities
- Description of the non-linear modelEmpirics: parameters estimation
- The data: range and properties
- Parameters of the stochastic volatility of the factors
(Conclusion

Definitions and notations

Scope $=$ cross-sectional dependences among daily returns of stock prices

This work = mainly phenomenological/empirical contribution
(no focus on estimation techniques, statistical properties, etc.)

Minimal extension of structural factor model \neq explicit copula modeling

Notations:

- Y is a $\boldsymbol{T} \times N$ matrix, stacking realizations of a (standard) random vector of size N
$\rho=\frac{1}{T} X^{\dagger} X$ is the usual estimator of the $(N \times N)$ correlation matrix

Definitions and notations

Scope $=$ cross-sectional dependences among daily returns of stock prices

This work = mainly phenomenological/empirical contribution (no focus on estimation techniques, statistical properties, etc.)

Minimal extension of structural factor model \neq explicit copula modeling

Notations:

- Y is a $7 \times N$ matrix, stacking realizations of a (standard) random vector of size N
$\rho=\frac{1}{T} X^{\dagger} X$ is the usual estimator of the $(N \times N)$ correlation matrix

Definitions and notations

Scope $=$ cross-sectional dependences among daily returns of stock prices

This work = mainly phenomenological/empirical contribution (no focus on estimation techniques, statistical properties, etc.)

Minimal extension of structural factor model \neq explicit copula modeling

Notations:

Definitions and notations

Scope $=$ cross-sectional dependences among daily returns of stock prices

This work = mainly phenomenological/empirical contribution (no focus on estimation techniques, statistical properties, etc.)

Minimal extension of structural factor model \neq explicit copula modeling

Notations:

- X is a $T \times N$ matrix, stacking realizations of a (standard) random vector of size N
- $\rho=\frac{1}{T} X^{\dagger} X$ is the usual estimator of the $(N \times N)$ correlation matrix

Non-linear dependences in pairs of stock returns exhibit non-trivial patterns. F.ex. the excess joint probability

$$
p_{i j}=\operatorname{Prob}\left[X_{t i}<0 \text { and } X_{t j}<0\right]-1 / 4
$$

is predicted to be $\sin \rho_{i j} / 2 \pi$ by the whole class of so-called elliptical copulas (and even beyond !).
"predicted - measured" discrepancy:
$\Delta\left(\rho_{i j}\right)=\log \left[\arg \sin \left(2 \pi p_{i j}\right)\right]-\log \rho_{i j}$

Non-linear dependences in pairs of stock returns exhibit non-trivial patterns. F.ex. the excess joint probability

$$
p_{i j}=\operatorname{Prob}\left[X_{t i}<0 \text { and } X_{t j}<0\right]-1 / 4
$$

is predicted to be $\sin \rho_{i j} / 2 \pi$ by the whole class of so-called elliptical copulas (and even beyond !).
"predicted - measured" discrepancy:

$$
\Delta\left(\rho_{i j}\right)=\log \left[\arg \sin \left(2 \pi p_{i j}\right)\right]-\log \rho_{i j}
$$

$\Delta\left(\rho_{i j}\right)$ VS $\rho_{i j}$
Non-linear dependences in pairs of stock returns exhibit non-trivial patterns. F.ex. the excess joint probability

$$
p_{i j}=\operatorname{Prob}\left[X_{t i}<0 \text { and } X_{t j}<0\right]-1 / 4
$$

is predicted to be $\sin \rho_{i j} / 2 \pi$ by the whole class of so-called elliptical copulas (and even beyond !).
"predicted - measured" discrepancy:

$$
\Delta\left(\rho_{i j}\right)=\log \left[\arg \sin \left(2 \pi p_{i j}\right)\right]-\log \rho_{i j}
$$

2000-2009

$$
X_{t j}=\sum_{k=1}^{M} \beta_{k j} F_{t k}+E_{t j}
$$

$F_{t 1}$ is always some definition of "the market"

Interpretations of factor(s):

- known/exogeneosus/economic vs unknown/endogenous/algebraic
- regression vs decomposition

The meaning of the "residuals" e_{j} ?

$$
X_{t j}=\sum_{k=1}^{M} \beta_{k j} F_{t k}+E_{t j}
$$

$F_{t 1}$ is always some definition of "the market"

Interpretations of factor(s):

- known/exogeneous/ecoromic vs unknown/endogenous/algebraic
- regression vs decomposition

The meaning of the "residuals" e_{j} ?

Linear multi-factors model

$$
X_{t j}=\sum_{k=1}^{M} \beta_{k j} F_{t k}+E_{t j}
$$

$F_{t 1}$ is always some definition of "the market"
Interpretations of factor(s):

- known/exogeneous/economic vs unknown/endogenous/algebraic
- regression vs decomposition

Linear multi-factors model

$$
X_{t j}=\sum_{k=1}^{M} \beta_{k j} F_{t k}+E_{t j}
$$

$F_{t 1}$ is always some definition of "the market"
Interpretations of factor(s):

- known/exogeneous/economic vs unknown/endogenous/algebraic
- regression vs decomposition

The meaning of the "residuals" e_{j} ?

Linear multi-factors model: estimation

- Input: standardized return series $X_{t i}$, number of factors M (=10 below). not $F_{t k}$
- Output: coefficients $\beta_{k i}$, factor series $F_{t k}$, residual series $E_{t i}$

We want to find the M most relevant uncorrelated and common unit-variance factors F $(T \times M)$, and the exposures $\beta(M \times N)$ of every stock to every factor.

We look for the matrix $\beta^{\dagger} \beta$ of rank M that best fits the empirical correlation matrix. We qet the orthogonal series of F and E by daily cross-sectional rearessions

Linear multi-factors model: estimation

- Input: standardized return series $X_{t i}$, number of factors M (=10 below). not $F_{t k}$
- Output: coefficients $\beta_{k i}$, factor series $F_{t k}$, residual series $E_{t i}$

We want to find the M most relevant uncorrelated and common unit-variance factors F $(T \times M)$, and the exposures $\beta(M \times N)$ of every stock to every factor.

We look for the matrix $\beta^{\dagger} \beta$ of rank M that best fits the empirical correlation matrix We qet the orthoaonal series of F and E bv daily cross-sectional rearessions

Linear multi-factors model: estimation

- Input: standardized return series $X_{t i}$, number of factors M (=10 below). not $F_{t k}$
- Output: coefficients $\beta_{k i}$, factor series $F_{t k}$, residual series $E_{t i}$

We want to find the M most relevant uncorrelated and common unit-variance factors F $(T \times M)$, and the exposures $\beta(M \times N)$ of every stock to every factor.

We look for the matrix $\beta^{\dagger} \beta$ of rank M that best fits the empirical correlation matrix We aet the orthoaonal series of F and E bv dailv cross-sectional rearessions

Linear multi-factors model: estimation

- Input: standardized return series $X_{t i}$, number of factors M (=10 below). not $F_{t k}$
- Output: coefficients $\beta_{k i}$, factor series $F_{t k}$, residual series $E_{t i}$

We want to find the M most relevant uncorrelated and common unit-variance factors F ($T \times M$), and the exposures $\beta(M \times N)$ of every stock to every factor.

$$
\left\langle X_{t i} X_{t j}\right\rangle_{t}= \begin{cases}\sum_{k=1}^{M} \beta_{k i} \beta_{k j} & , i \neq j \\ 1 & , i=j\end{cases}
$$

We look for the matrix $\beta^{\dagger} \beta$ of rank M that best fits the empirical correlation matrix. We get the orthogonal series of F and E by daily cross-sectional regressions

Linear multi-factors model: estimation

- Input: standardized return series $X_{t i}$, number of factors M (=10 below). not $F_{t k}$
- Output: coefficients $\beta_{k i}$, factor series $F_{t k}$, residual series $E_{t i}$

We want to find the M most relevant uncorrelated and common unit-variance factors F ($T \times M$), and the exposures $\beta(M \times N)$ of every stock to every factor.

$$
\left\langle X_{t i} X_{t j}\right\rangle_{t}= \begin{cases}\sum_{k=1}^{M} \beta_{k i} \beta_{k j} & , i \neq j \\ 1 & , i=j\end{cases}
$$

We look for the matrix $\beta^{\dagger} \beta$ of rank M that best fits the empirical correlation matrix. We get the orthogonal series of F and E by daily cross-sectional regressions

Dependence structure in factors and residuals

Recall: $X=F \beta+E$, with $\beta(M \times N)$

Non-linear correlations of the obtained factors and residuals?

Wait: "aren't they supposed to be uncorrelated by construction ?"

Dependence structure in factors and residuals

Recall: $X=F \beta+E$, with $\beta(M \times N)$

Non-linear correlations of the obtained factors and residuals ?

$$
\left.\left.\left.\langle | F_{t k}\right|^{p}\left|F_{t t}\right|^{p}\right\rangle^{1 / p^{2}},\left.\quad\langle | E_{t i}\right|^{p}\left|E_{t j}\right|^{p}\right\rangle^{1 / p^{2}}, \quad p \in(0,2]
$$

Dependence structure in factors and residuals

Recall: $X=F \beta+E$, with $\beta(M \times N)$
Non-linear correlations of the obtained factors and residuals ?

$$
\left.\left.\left.\langle | F_{t k}\right|^{p}\left|F_{t t}\right|^{p}\right\rangle^{1 / p^{2}} \quad,\left.\quad\langle | E_{t i}\right|^{p}\left|E_{t j}\right|^{p}\right\rangle^{1 / p^{2}} \quad, \quad p \in(0,2]
$$

1st eigenmode
Wait: "aren't they supposed to be uncorrelated by construction?"

Dependence structure in factors and residuals

Recall: $X=F \beta+E$, with $\beta(M \times N)$
Non-linear correlations of the obtained factors and residuals ?

$$
\left.\left.\left.\langle | F_{t k}\right|^{p}\left|F_{t t}\right|^{p}\right\rangle^{1 / p^{2}},\left.\quad\langle | E_{t i}\right|^{p}\left|E_{t j}\right|^{p}\right\rangle^{1 / p^{2}} \quad, \quad p \in(0,2]
$$

2nd eigenmode
Wait: "aren't they supposed to be uncorrelated by construction?"

Dependence structure in factors and residuals

Recall: $X=F \beta+E$, with $\beta(M \times N)$
Non-linear correlations of the obtained factors and residuals ?

$$
\left.\left.\left.\langle | F_{t k}\right|^{p}\left|F_{t t}\right|^{p}\right\rangle^{1 / p^{2}},\left.\quad\langle | E_{t i}\right|^{p}\left|E_{t j}\right|^{p}\right\rangle^{1 / p^{2}} \quad, \quad p \in(0,2]
$$

2nd eigenmode
Wait: "aren't they supposed to be uncorrelated by construction?"

Dependence structure in factors and residuals

Recall: $X=F \beta+E$, with $\beta(M \times N)$
Non-linear correlations of the obtained factors and residuals ?

$$
\left.\left.\left.\langle | F_{t k}\right|^{p}\left|F_{t t}\right|^{p}\right\rangle^{1 / p^{2}} \quad,\left.\quad\langle | E_{t i}\right|^{p}\left|E_{t j}\right|^{p}\right\rangle^{1 / p^{2}} \quad, \quad p \in(0,2]
$$

2nd eigenmode
Wait: "aren't they supposed to be uncorrelated by construction?" UNCORRELATED BUT NOT INDEPENDENT

Non-Gaussian multi-factors model

$$
x_{j}=\sum_{k=1}^{M} \beta_{k j} f_{k}+e_{j}
$$

with non-Gaussian and dependent (though uncorrelated) factors and residuals:

- One-factor model for the log-vol of linear factors f_{k}

$$
f_{k}=\epsilon_{k} \operatorname{axp}\left(\Lambda_{k} \Omega_{0}+s_{k} \omega_{k}\right) \quad\left\langle f_{k}^{2}\right\rangle=1
$$

- Two-factors model for the log-vol of residuals e_{j}

Non-Gaussian multi-factors model

$$
x_{j}=\sum_{k=1}^{M} \beta_{k j} f_{k}+e_{j}
$$

with non-Gaussian and dependent (though uncorrelated) factors and residuals:

- One-factor model for the log-vol of linear factors f_{k}

$$
f_{k}=\epsilon_{k} \exp \left(A_{k 0} \Omega_{0}+s_{k} \omega_{k}\right)
$$

- Two-factors model for the log-vol of residuals e_{j}

Non-Gaussian multi-factors model

$$
x_{j}=\sum_{k=1}^{M} \beta_{k j} f_{k}+e_{j}
$$

with non-Gaussian and dependent (though uncorrelated) factors and residuals:

- One-factor model for the log-vol of linear factors f_{k}

$$
f_{k}=\epsilon_{k} \exp \left(A_{k 0} \Omega_{0}+s_{k} \omega_{k}\right)
$$

- Two-factors model for the log-vol of residuals e_{j}

$$
e_{j}=\eta_{j} \exp \left(B_{j 0} \Omega_{0}+B_{j 1} \omega_{1}+\widetilde{s}_{j j} \tilde{\omega}_{j}\right)
$$

Non-Gaussian multi-factors model

$$
x_{j}=\sum_{k=1}^{M} \beta_{k j} f_{k}+e_{j}
$$

with non-Gaussian and dependent (though uncorrelated) factors and residuals:

- One-factor model for the log-vol of linear factors f_{k}

$$
f_{k}=\epsilon_{k} \exp \left(A_{k 0} \Omega_{0}+s_{k} \omega_{k}\right), \quad\left\langle f_{k}^{2}\right\rangle=1
$$

- Two-factors model for the log-vol of residuals e_{j}

$$
e_{j}=\eta_{j} \exp \left(B_{j 0} \Omega_{0}+B_{j 1} \omega_{1}+\widetilde{s}_{j j} \tilde{\omega}_{j}\right), \quad\left\langle e_{j}^{2}\right\rangle=1-\sum_{l} \beta_{l j}^{2}
$$

$$
x_{j}=\sum_{k=1}^{M} \beta_{k j} f_{k}+e_{j} \text { with } \begin{cases}f_{k} & =\epsilon_{k} \exp \left(A_{k 0} \Omega_{0}+s_{k} \omega_{k}\right) \\ e_{j} & =\eta_{j} \exp \left(B_{j 0} \Omega_{0}+B_{j 1} \omega_{1}+\widetilde{s}_{j j} \tilde{\omega}_{j}\right)\end{cases}
$$

Stochastic (e.g. Gaussian):

Non-Gaussian multi-factors model

$$
x_{j}=\sum_{k=1}^{M} \beta_{k j} f_{k}+e_{j} \quad \text { with } \quad \begin{cases}f_{k} & =\epsilon_{k} \exp \left(A_{k 0} \Omega_{0}+s_{k} \omega_{k}\right) \\ e_{j} & =\eta_{j} \exp \left(B_{j 0} \Omega_{0}+B_{j 1} \omega_{1}+\widetilde{s}_{j j} \tilde{\omega}_{j}\right)\end{cases}
$$

Stochastic (e.g. Gaussian):

- random signed ϵ_{k}, η_{j},
- stochastic log-volatilities $\Omega_{0}, \omega_{k}, \tilde{\omega}_{j}$,

Scalar parameters:

Non-Gaussian multi-factors model

$$
x_{j}=\sum_{k=1}^{M} \beta_{k j} f_{k}+e_{j} \quad \text { with } \quad\left\{\begin{array}{l}
f_{k}=\epsilon_{k} \exp \left(A_{k 0} \Omega_{0}+s_{k} \omega_{k}\right) \\
e_{j}=\eta_{j} \exp \left(B_{j 0} \Omega_{0}+B_{j 1} \omega_{1}+\widetilde{s}_{j j} \tilde{\omega}_{j}\right)
\end{array}\right.
$$

Stochastic (e.g. Gaussian):

- random signed ϵ_{k}, η_{j},
- stochastic log-volatilities $\Omega_{0}, \omega_{k}, \tilde{\omega}_{j}$,

Scalar parameters:

Non-Gaussian multi-factors model

$$
x_{j}=\sum_{k=1}^{M} \beta_{k j} f_{k}+e_{j} \quad \text { with } \quad\left\{\begin{array}{l}
t_{k}=\epsilon_{k} \exp \left(A_{k 0} \Omega_{0}+s_{k} \omega_{k}\right) \\
e_{j}=\eta_{j} \exp \left(B_{j 0} \Omega_{0}+B_{j 1} \omega_{1}+\widetilde{s}_{j j} \tilde{\omega}_{j}\right)
\end{array}\right.
$$

Stochastic (e.g. Gaussian):

- random signed ϵ_{k}, η_{j},
- stochastic log-volatilities $\Omega_{0}, \omega_{k}, \tilde{\omega}_{j}$,

Scalar parameters:

- linear weights, exposure of stock x_{j} to factor $f_{k}: \beta_{k j}$
- exposure of factor f_{k} to logvol $\Omega_{0}: A_{k 0}$ (+ residual factor vol: s_{k})
- exposure of residual e_{j} to logvols $\Omega_{0}, \omega_{1}: B_{j 0}, B_{j 1}$ (+ residual residual vol: $\widetilde{s}_{j j}$)

Non-Gaussian multi-factors model

$$
x_{j}=\sum_{k=1}^{M} \beta_{k j} f_{k}+e_{j} \quad \text { with } \quad \begin{cases}f_{k} & =\epsilon_{k} \exp \left(A_{k 0} \Omega_{0}+s_{k} \omega_{k}\right) \\ e_{j} & =\eta_{j} \exp \left(B_{j 0} \Omega_{0}+B_{j 1} \omega_{1}+\widetilde{s}_{j j} \tilde{\omega}_{j}\right)\end{cases}
$$

$\Omega_{0}=$ dominant and common mode of log-volatility

Non-Gaussian multi-factors model

$$
x_{j}=\sum_{k=1}^{M} \beta_{k j} f_{k}+e_{j} \quad \text { with } \quad \begin{cases}f_{k} & =\epsilon_{k} \exp \left(A_{k 0} \Omega_{0}+s_{k} \omega_{k}\right) \\ e_{j} & =\eta_{j} \exp \left(B_{j 0} \Omega_{0}+B_{j 1} \omega_{1}+\widetilde{s}_{j j} \tilde{\omega}_{j}\right)\end{cases}
$$

- stochastic log-volatilities $\Omega_{0}, \omega_{k}, \tilde{\omega}_{j}$,

$\Omega_{0}=$ dominant and common mode of log-volatility

Non-Gaussian multi-factors model

$$
x_{j}=\sum_{k=1}^{M} \beta_{k j} f_{k}+e_{j} \quad \text { with } \quad\left\{\begin{array}{l}
f_{k}=\epsilon_{k} \exp \left(A_{k 0} \Omega_{0}+s_{k} \omega_{k}\right) \\
e_{j}=\eta_{j} \exp \left(B_{j 0} \Omega_{0}+B_{j 1} \omega_{1}+\widetilde{s}_{j j} \tilde{\omega}_{j}\right)
\end{array}\right.
$$

- stochastic log-volatilities $\Omega_{0}, \omega_{k}, \tilde{\omega}_{j}$,

$$
\Omega_{0}=\text { dominant and common mode of log-volatility }
$$

$$
\omega_{1}=\log \text {-volatility of market } f_{1}
$$

Modeling stock returns dependences

- Factor models and linear correlations
- Non-linearities
- Description of the non-linear model
(2) Empirics: parameters estimation
- The data: range and properties
- Parameters of the stochastic volatility of the factors

Dataset

Stock returns $X_{t i}$, for the companies in the SP500 continuously traded in the period.

	$2000-2004$	$2005-2009$	2000-2009
N	352	345	262
T	1255	1258	2514

Disregard 'Basic Materials', as mine companies are typically anti-correlated with other sectors.
Normalize each series.

- Input: factor series $F_{t k}$, residual series $E_{t i}$, number of factors M
- Output: coefficients $A_{k 0}, s_{k}, B_{j 0}, B_{j 1}, \widetilde{s}_{j j}$, log-volatilities series $\Omega_{t 0}, \omega_{t 1}$

Taking advantage of the exponential structures in the definition of the random volatilities, predictions of arbitrary p-order absolute correlations can be expressed simply:

Non-linear model calibration

- Input: factor series $F_{t k}$, residual series $E_{t i}$, number of factors M
- Output: coefficients $A_{k 0}, s_{k}, B_{j 0}, B_{j 1}, \widetilde{s}_{j j}$, log-volatilities series $\Omega_{t 0}, \omega_{t 1}$

Taking advantage of the exponential structures in the definition of the random volatilities, predictions of arbitrary p-order absolute correlations can be expressed simply:

$$
\begin{align*}
& \frac{1}{p^{2}} \log \frac{\left.\left.\langle | F_{t k}\right|^{p}\left|F_{t t}\right|^{p}\right\rangle}{\left.\left.\left.\langle | F_{t k}\right|^{p}\right\rangle\left.\langle | F_{t t}\right|^{p}\right\rangle}=A_{k 0} A_{10}+\delta_{k 1}\left(\gamma(p)+s_{k} s_{k}\right) \tag{1}\\
& \frac{1}{p^{2}} \log \frac{\left.\left.\langle | F_{t k}\right|^{p}\left|E_{t i}\right|^{p}\right\rangle}{\left.\left.\langle | F_{t k}|p\rangle\langle | E_{t i}\right|^{p}\right\rangle}=A_{k 0} B_{i 0}+\delta_{k 1} A_{11} B_{i 1} \tag{2}\\
& \frac{1}{p^{2}} \log \frac{\left.\left.\langle | E_{t i}\right|^{p}\left|E_{t j}\right|^{p}\right\rangle}{\left.\left.\left.\langle | E_{t i}\right|^{p}\right\rangle\left.\langle | E_{t j}\right|^{\rho}\right\rangle}=B_{i 0} B_{j 0}+B_{i 1} B_{j 1}+\delta_{i j}\left(\gamma(p)+\widetilde{s}_{i} \widetilde{s}_{i}\right) \tag{3}
\end{align*}
$$

$$
x_{j}=\sum_{k=1}^{M} \beta_{k j} f_{k}+e_{j} \quad \text { with } \quad \begin{cases}t_{k} & =\epsilon_{k} \exp \left(A_{k 0} \Omega_{0}+s_{k} \omega_{k}\right) \\ e_{j} & =\eta_{j} \exp \left(B_{j 0} \Omega_{0}+B_{j 1} \omega_{1}+\widetilde{s}_{j j} \tilde{\omega}_{j}\right)\end{cases}
$$

$$
x_{j}=\sum_{k=1}^{M} \beta_{k j} f_{k}+e_{j} \quad \text { with } \quad \begin{cases}t_{k} & =\epsilon_{k} \exp \left(A_{k 0} \Omega_{0}+s_{k} \omega_{k}\right) \\ e_{j} & =\eta_{j} \exp \left(B_{j 0} \Omega_{0}+B_{j 1} \omega_{1}+\widetilde{s}_{j j} \tilde{\omega}_{j}\right)\end{cases}
$$

2000-2004 2005-2009

Volatility exposures: results (A)

$$
x_{j}=\sum_{k=1}^{M} \beta_{k j} f_{k}+e_{j} \quad \text { with } \quad \begin{cases}f_{k} & =\epsilon_{k} \exp \left(A_{k 0} \Omega_{0}+s_{k} \omega_{k}\right) \\ e_{j} & =\eta_{j} \exp \left(B_{j 0} \Omega_{0}+B_{j 1} \omega_{1}+\widetilde{s}_{j j} \tilde{\omega}_{j}\right)\end{cases}
$$

2000-2004 2005-2009 2009-2012

insight.data.clarity.

$$
x_{j}=\sum_{k=1}^{M} \beta_{k j} f_{k}+e_{j} \quad \text { with } \quad \begin{cases}f_{k} & =\epsilon_{k} \exp \left(A_{k 0} \Omega_{0}+s_{k} \omega_{k}\right) \\ e_{j} & =\eta_{j} \exp \left(B_{j 0} \Omega_{0}+B_{j 1} \omega_{1}+\widetilde{s}_{j j} \tilde{\omega}_{j}\right)\end{cases}
$$

Then the series of $\Omega_{t 0}, \omega_{t 1}$ are retrieved:

$$
\log \left|e_{j}\right|=\Omega_{0} B_{j 0}+\omega_{1} B_{j 1}+\left(\tilde{\omega}_{j} \widetilde{s}_{j j}+\log \left|\eta_{j}\right|\right)
$$

we design the linear cross-sectional regression

```
log}|\mp@subsup{E}{t.}{}.|-\langle\operatorname{log}|\mp@subsup{E}{t.}{}|\rangle=(\mp@subsup{\Omega}{t0}{}\quad\mp@subsup{\omega}{t1}{})(B.
```

and solve it date-by-date with a Feasible GLS.

Reconstructing log-vol series

Then the series of $\Omega_{t 0}, \omega_{t 1}$ are retrieved: from

$$
\log \left|e_{j}\right|=\Omega_{0} B_{j 0}+\omega_{1} B_{j 1}+\left(\tilde{\omega}_{j} \widetilde{s}_{j j}+\log \left|\eta_{j}\right|\right)
$$

we design the linear cross-sectional regression

$$
\log \left|E_{t .}\right|-\langle\log | E_{t .}| \rangle=\left(\begin{array}{ll}
\Omega_{t 0} & \omega_{t 1}
\end{array}\right)\left(\begin{array}{ll}
B_{.0} & B_{.1}
\end{array}\right)^{\dagger}+\varepsilon_{t .} .
$$

and solve it date-by-date with a Feasible GLS.

Reconstructing $F_{t 1}$

1st factor of the model: $\left|f_{1}\right|=\left|\epsilon_{1}\right| e^{A_{11} \omega_{1}} e^{A_{10} \Omega_{0}}$
Stock index volatility: $\left\langle I(t)^{2}\right\rangle \approx \sigma(t)^{2} \rho(t)$

Reconstructing $F_{t 1}$

1st factor of the model: $\left|f_{1}\right|=\left|\epsilon_{1}\right| \mathrm{e}^{A_{11} \omega_{1}} \mathrm{e}^{A_{10} \Omega_{0}}$
Stock index volatility: $\left\langle I(t)^{2}\right\rangle \approx \sigma(t)^{2} \rho(t)$

Reconstructing $F_{t 1}$

1st factor of the model: $\left|f_{1}\right|=\left|\epsilon_{1}\right| \mathrm{e}^{A_{11} \omega_{1}} \mathrm{e}^{A_{10} \Omega_{0}}$
Stock index volatility: $\left\langle I(t)^{2}\right\rangle \approx \sigma(t)^{2} \rho(t)$
2005-2009

Initial motivation: excess probabilities

$$
p_{i j}=\operatorname{Prob}\left[x_{i}<0 \text { and } x_{j}<0\right]-1 / 4
$$

$\log \left[\arg \sin \left(2 \pi p_{i j}\right) / \rho_{i j}\right]$ vs $\rho_{i j}$

Horizontal: elliptical copulas Black: non-parametric fit Red: model prediction

Take-home messages

- Stock-returns exhibit non-trivial cross-sectional non-linear dependences
- Factor models allow to account for these fine-structure effects.
provided factors and residuals are orthogonal but not independent
A common mode of log-vol Ω_{0} affecting all factors and residuals
- The residual log-vol of the market factor ω_{1} affecting all stocks' residuals
- minimal extension of factor models $=$ intuitive (\neq abstract copulas)

Take-home messages

- Stock-returns exhibit non-trivial cross-sectional non-linear dependences
- Factor models allow to account for these fine-structure effects. . .
provided factors and residuals are orthogonal but not independent
- A common mode of log-vol Ω_{0} affecting all factors and residuals
- The residual lon-vol of the market factor wa affecting all stocks' residuals
- minimal extension of factor models $=$ intuitive (\neq abstract copulas)
insight.data.clarity.

Take-home messages

- Stock-returns exhibit non-trivial cross-sectional non-linear dependences
- Factor models allow to account for these fine-structure effects. . .
- ... provided factors and residuals are orthogonal but not independent
- A common mode of log-vol Ω_{0} affecting all factors and residuals
- The residual log-vol of the market factor ω_{1} affecting all stocks' residuals
- minimal extension of factor models $=$ intuitive (\neq abstract copulas)
insight.data.clarity

Take-home messages

- Stock-returns exhibit non-trivial cross-sectional non-linear dependences
- Factor models allow to account for these fine-structure effects. . .
- ... provided factors and residuals are orthogonal but not independent
- A common mode of log-vol Ω_{0} affecting all factors and residuals
* The residual log-vol of the market factor ω_{1} affecting all stocks' residuals
- minimal extension of factor models $=$ intuitive (\neq abstract copulas)

Take-home messages

- Stock-returns exhibit non-trivial cross-sectional non-linear dependences
- Factor models allow to account for these fine-structure effects. . .
- ... provided factors and residuals are orthogonal but not independent
- A common mode of log-vol Ω_{0} affecting all factors and residuals
- The residual log-vol of the market factor ω_{1} affecting all stocks' residuals
- minimal extension of factor models $=$ intuitive (\neq abstract copulas)

INSIGHT.DATA.CLARITY.

Take-home messages

- Stock-returns exhibit non-trivial cross-sectional non-linear dependences
- Factor models allow to account for these fine-structure effects...
- ... provided factors and residuals are orthogonal but not independent
- A common mode of log-vol Ω_{0} affecting all factors and residuals
- The residual log-vol of the market factor ω_{1} affecting all stocks' residuals
- minimal extension of factor models $=$ intuitive (\neq abstract copulas)

4. Appendices

- References
- Dataset
- Technicalities

References

Tean-Philippe Bouchaud and Marc Potters.
Theory of Financial Risk and Derivative Pricing: from Statistical Physics to Risk Management.
Cambridge University Press, Cambridge, 2003.
囯 Rémy Chicheportiche and Jean-Philippe Bouchaud.
The joint distribution of stock returns is not elliptical.
International Journal of Theoretical and Applied Finance,
15(3):1250019-1250041, May 2012.
囯 Rémy Chicheportiche and Jean-Philippe Bouchaud.
A nested factor model for non-linear dependencies in stock returns.
Quantitative Finance, 15(11):1789-1804, 2015.

Dataset

Table: Economic sectors according to Bloomberg classification, with corresponding number of individuals for each period.

Bloomberg sector	Code	2000-04	2005-09	2000-09
Communications	$\# 3$	33	25	18
Consumer, Cyclical	$\# 4$	60	49	40
Consumer, Non-Cyclical	$\# 5$	67	75	53
Energy	$\# 7$	19	21	15
Financial	$\# 8$	57	55	37
Industrial	$\# 11$	51	50	42
Technology	$\# 13$	38	43	33
Utilities	$\# 14$	27	27	24
Total number of firms (N)		352	345	262
Total number of days (T)		1255	1258	2514

It is convenient to introduce the function

$$
\Phi_{l}(a, b)=\frac{M_{\omega^{\prime}}(a+b)}{M_{\omega_{l}}(a) M_{\omega_{l}}(b)}
$$

where $M_{\omega_{l}}(p) \equiv E\left[\exp \left(p \omega_{l}\right)\right]$ is the Moment Generating Function of $\omega_{/}$.
ω_{l} Gaussian for the presentation: $M_{\omega_{l}}(p)=\exp \left(p^{2} / 2\right)$
But in the general case, developping in cumulants, $M_{\omega \text { l }}$ is the exponential of a polynomial. Typically, with
one gets

Appendix: Technicalities

It is convenient to introduce the function

$$
\Phi_{l}(a, b)=\frac{M_{\omega_{1}}(a+b)}{M_{\omega_{l}}(a) M_{\omega_{l}}(b)}
$$

where $M_{\omega_{l}}(p) \equiv E\left[\exp \left(p \omega_{l}\right)\right]$ is the Moment Generating Function of $\omega_{/}$. ω_{l} Gaussian for the presentation: $M_{\omega_{l}}(p)=\exp \left(p^{2} / 2\right)$

But in the general case, developping in cumulants, M_{ω}, is the exponential of a polynomial. Typically, with

Appendix: Technicalities

It is convenient to introduce the function

$$
\Phi_{l}(a, b)=\frac{M_{\omega_{l}}(a+b)}{M_{\omega_{l}}(a) M_{\omega_{l}}(b)}
$$

where $M_{\omega_{l}}(p) \equiv E\left[\exp \left(p \omega_{l}\right)\right]$ is the Moment Generating Function of $\omega_{/}$.
ω_{l} Gaussian for the presentation: $M_{\omega_{l}}(p)=\exp \left(p^{2} / 2\right)$
But in the general case, developping in cumulants, $M_{\omega l}$ is the exponential of a polynomial. Typically, with

one gets

Appendix: Technicalities

It is convenient to introduce the function

$$
\Phi_{l}(a, b)=\frac{M_{\omega_{1}}(a+b)}{M_{\omega_{l}}(a) M_{\omega_{l}}(b)}
$$

where $M_{\omega_{l}}(p) \equiv E\left[\exp \left(p \omega_{l}\right)\right]$ is the Moment Generating Function of $\omega_{/}$.
ω_{l} Gaussian for the presentation: $M_{\omega_{l}}(p)=\exp \left(p^{2} / 2\right)$
But in the general case, developping in cumulants, $M_{\omega_{l}}$ is the exponential of a polynomial. Typically, with

$$
\left\langle\omega_{l}\right\rangle=0 \quad\left\langle\omega_{l}^{2}\right\rangle=1 \quad\left\langle\omega_{1}^{3}\right\rangle=\zeta_{1} \quad\left\langle\omega_{l}^{4}\right\rangle=3+\kappa_{l}
$$

one gets

$$
\Phi_{I}(a, b)=\exp \left(a b+\frac{\zeta_{I}}{2}\left(a^{2} b+a b^{2}\right)+\frac{\kappa_{I}}{12}\left(2 a^{3} b+3 a^{2} b^{2}+2 a b^{3}\right)\right)
$$

Appendix: Technicalities

Similarly, the quantity

$$
c a(p)=\frac{E\left[|\epsilon|^{2 p}\right]}{E\left[|\epsilon|^{p}\right]^{2}}=\sqrt{\pi} \frac{\Gamma\left(\frac{1}{2}+p\right)}{\Gamma\left(\frac{1+p}{2}\right)^{2}}
$$

stands for the normalized d-moment of the abs of Gaussian variables. The log version will be used in the following

$$
\gamma(p)=\frac{1}{p^{2}} \log c a(p)
$$

f.ex. $\gamma(2)=\log (3) / 4$.

Factors and residuals: non-linear

Keep in mind:

$$
x_{j}=\sum_{k=1}^{M} \beta_{k j} f_{k}+e_{j} \quad \text { with } \quad \begin{cases}f_{k} & =\epsilon_{k} \exp \left(A_{k 0} \Omega_{0}+s_{k} \omega_{k}\right) \\ e_{j} & =\eta_{j} \exp \left(B_{j 0} \Omega_{0}+B_{j 1} \omega_{1}+\widetilde{s}_{j j} \tilde{\omega}_{j}\right)\end{cases}
$$

Factor-Factor:

$\frac{E\left[\left|f_{k}\right|^{p}\left|f_{j}\right|^{p}\right]}{E\left[\left|f_{k}\right|{ }^{P}\right] E\left[\left|f_{\mid}\right|^{p}\right]}=\Phi_{0}\left(p A_{k 0}, p A_{10}\right)\left(\operatorname{ca}(p) \Phi_{k}\left(p s_{k}, p s_{k}\right)\right)^{\delta}$

Factor-Residual

$$
\frac{E\left[\left|f_{k}\right|^{p}\left|e_{i}\right|^{p}\right]}{E\left[\left|f_{k}\right|^{p}\right] E\left[\left|e_{i}\right|^{p}\right]}=\Phi_{0}\left(p A_{k 0}, p B_{i 0}\right) \Phi_{1}\left(p A_{11}, p B_{i 1}\right)^{\delta_{k 1}}
$$

Residual-Residual:

$$
\frac{E\left[\mid e_{i}^{\mid n \prime} e_{\mid}^{\mid n}\right]}{E\left[\left|e_{i}\right| p\right] E[|e j| p]}=\phi_{0}\left(p B_{i 0}, p B_{j 0}\right) \phi_{1}\left(p B_{i 1}, p B_{j 1}\right)\left(c a(p) \phi_{\infty}\left(\tilde{s}_{1}, \tilde{s_{i}}\right)\right)
$$

Factors and residuals: non-linear

Keep in mind:

$$
x_{j}=\sum_{k=1}^{M} \beta_{k j} f_{k}+e_{j} \quad \text { with } \quad \begin{cases}f_{k} & =\epsilon_{k} \exp \left(A_{k 0} \Omega_{0}+s_{k} \omega_{k}\right) \\ e_{j} & =\eta_{j} \exp \left(B_{j 0} \Omega_{0}+B_{j 1} \omega_{1}+\widetilde{s}_{j j} \tilde{\omega}_{j}\right)\end{cases}
$$

Factor-Factor:

$$
\begin{equation*}
\frac{E\left[\left|f_{k}\right|^{p}\left|f_{l}\right|^{p}\right]}{E\left[\left|f_{k}\right|^{p}\right] E\left[\left|f_{l}\right|^{p}\right]}=\Phi_{0}\left(p A_{k 0}, p A_{10}\right)\left(c a(p) \Phi_{k}\left(p s_{k}, p s_{k}\right)\right)^{\delta_{k l}} \tag{4}
\end{equation*}
$$

Factor-Residual

$$
\frac{E\left[\left|f_{k}\right|^{p}\left|e_{i}\right|^{p}\right]}{E\left[\left|f_{k}\right|^{p}\right] E\left[\left|e_{i}\right|^{p}\right]}=\Phi_{0}\left(p A_{k 0}, p B_{i 0}\right) \Phi_{1}\left(p A_{11}, p B_{i 1}\right)^{\delta_{k}}
$$

Residual-Residual:

Factors and residuals: non-linear

Keep in mind:

$$
x_{j}=\sum_{k=1}^{M} \beta_{k j} f_{k}+e_{j} \quad \text { with } \quad \begin{cases}f_{k} & =\epsilon_{k} \exp \left(A_{k 0} \Omega_{0}+s_{k} \omega_{k}\right) \\ e_{j} & =\eta_{j} \exp \left(B_{j 0} \Omega_{0}+B_{j 1} \omega_{1}+\widetilde{s}_{j j} \tilde{\omega}_{j}\right)\end{cases}
$$

Factor-Factor:

$$
\begin{equation*}
\frac{E\left[\left|f_{k}\right|^{p}\left|f_{l}\right|^{p}\right]}{E\left[\left|f_{k}\right|^{p}\right] E\left[\left|f_{l}\right|^{p}\right]}=\Phi_{0}\left(p A_{k 0}, p A_{10}\right)\left(c a(p) \Phi_{k}\left(p s_{k}, p s_{k}\right)\right)^{\delta_{k l}} \tag{4}
\end{equation*}
$$

Factor-Residual:

$$
\begin{equation*}
\frac{E\left[\left|f_{k}\right|^{p}\left|e_{i}\right|^{p}\right]}{E\left[\left|f_{k}\right|^{p}\right] E\left[\left|e_{i}\right|^{p}\right]}=\Phi_{0}\left(p A_{k 0}, p B_{i 0}\right) \Phi_{1}\left(p A_{11}, p B_{i 1}\right)^{\delta_{k 1}} \tag{5}
\end{equation*}
$$

Residual-Residual:

Keep in mind:

$$
x_{j}=\sum_{k=1}^{M} \beta_{k j} f_{k}+e_{j} \quad \text { with } \quad \begin{cases}f_{k} & =\epsilon_{k} \exp \left(A_{k 0} \Omega_{0}+s_{k} \omega_{k}\right) \\ e_{j} & =\eta_{j} \exp \left(B_{j 0} \Omega_{0}+B_{j 1} \omega_{1}+\widetilde{s}_{j j} \tilde{\omega}_{j}\right)\end{cases}
$$

Factor-Factor:

$$
\begin{equation*}
\frac{E\left[\left|f_{k}\right|^{p}\left|f_{l}\right|^{p}\right]}{E\left[\left|f_{k}\right|^{p}\right] E\left[\left|f_{l}\right|^{p}\right]}=\Phi_{0}\left(p A_{k 0}, p A_{10}\right)\left(c a(p) \Phi_{k}\left(p s_{k}, p s_{k}\right)\right)^{\delta_{k l}} \tag{4}
\end{equation*}
$$

Factor-Residual:

$$
\begin{equation*}
\frac{E\left[\left|f_{k}\right|^{p}\left|e_{i}\right|^{p}\right]}{E\left[\left|f_{k}\right|^{p}\right] E\left[\left|e_{i}\right|^{p}\right]}=\Phi_{0}\left(p A_{k 0}, p B_{i 0}\right) \Phi_{1}\left(p A_{11}, p B_{i 1}\right)^{\delta_{k 1}} \tag{5}
\end{equation*}
$$

Residual-Residual:

$$
\begin{equation*}
\frac{E\left[\left|e_{i}\right|^{p}\left|e_{j}\right|^{p}\right]}{E\left[\left|e_{i}\right|^{p}\right] E\left[\left|e_{j}\right|^{p}\right]}=\Phi_{0}\left(p B_{i 0}, p B_{j 0}\right) \Phi_{1}\left(p B_{i 1}, p B_{j 1}\right)\left(c a(p) \Phi_{\infty}\left(p \widetilde{\mathbf{s}}_{i}, p \widetilde{s}_{i}\right)\right)^{\delta_{i j}} \tag{6}
\end{equation*}
$$

Quadratic correlations

$$
\begin{aligned}
E\left[x_{i}^{2} x_{j}^{2}\right] & =\sum_{k l}\left(\beta_{k i}^{2} \beta_{l j}^{2}+2 \beta_{k i} \beta_{k j} \beta_{l i} \beta_{l j}\right) \Phi_{0}\left(2 A_{k 0}, 2 A_{l 0}\right)\left(\frac{1}{3} \cdot 3 \cdot \Phi_{k}\left(2 s_{k}, 2 s_{k}\right)\right)^{\delta_{k l}} \\
& +\left(1+2 \delta_{i j}\right)\left(1-\sum_{l} \beta_{l i}^{2}\right) \sum_{k} \beta_{k j}^{2} \Phi_{0}\left(2 A_{k 0}, 2 B_{i 0}\right) \Phi_{1}\left(2 A_{11}, 2 B_{i 1}\right)^{\delta_{k 1}} \\
& +\left(1+2 \delta_{i j}\right)\left(1-\sum_{l} \beta_{l j}^{2}\right) \sum_{k} \beta_{k i}^{2} \Phi_{0}\left(2 A_{k 0}, 2 B_{j 0}\right) \Phi_{1}\left(2 A_{11}, 2 B_{j 1}\right)^{\delta} \delta_{k 1} \\
& +\left(1-\sum_{l} \beta_{l i}^{2}\right)\left(1-\sum_{l} \beta_{l j}^{2}\right) \Phi_{0}\left(2 B_{i 0}, 2 B_{j 0}\right) \Phi_{1}\left(2 B_{i 1}, 2 B_{j 1}\right)\left(3 \Phi_{\infty}\left(2 \widetilde{s}_{i}, 2 \widetilde{s}_{i}\right)\right)^{\delta_{i j}}
\end{aligned}
$$

When all the A's and B's are zero, we get back the usual Gaussian prediction

Quadratic correlations

$$
\begin{aligned}
E\left[x_{i}^{2} x_{j}^{2}\right] & =\sum_{k l}\left(\beta_{k i}^{2} \beta_{l j}^{2}+2 \beta_{k i} \beta_{k j} \beta_{l i} \beta_{l j}\right) \Phi_{0}\left(2 A_{k 0}, 2 A_{l 0}\right)\left(\frac{1}{3} \cdot 3 \cdot \Phi_{k}\left(2 s_{k}, 2 s_{k}\right)\right)^{\delta_{k l}} \\
& +\left(1+2 \delta_{i j}\right)\left(1-\sum_{l} \beta_{l i}^{2}\right) \sum_{k} \beta_{k j}^{2} \Phi_{0}\left(2 A_{k 0}, 2 B_{i 0}\right) \Phi_{1}\left(2 A_{11}, 2 B_{i 1}\right)^{\delta_{k 1}} \\
& +\left(1+2 \delta_{i j}\right)\left(1-\sum_{l} \beta_{l j}^{2}\right) \sum_{k} \beta_{k i}^{2} \Phi_{0}\left(2 A_{k 0}, 2 B_{j 0}\right) \Phi_{1}\left(2 A_{11}, 2 B_{j 1}\right)^{\delta_{k 1}} \\
& +\left(1-\sum_{l} \beta_{l i}^{2}\right)\left(1-\sum_{l} \beta_{l j}^{2}\right) \Phi_{0}\left(2 B_{i 0}, 2 B_{j 0}\right) \Phi_{1}\left(2 B_{i 1}, 2 B_{j 1}\right)\left(3 \Phi_{\infty}\left(2 \widetilde{s}_{i}, 2 \widetilde{s}_{i}\right)\right)^{\delta_{i j}}
\end{aligned}
$$

When all the A 's and B 's are zero, we get back the usual Gaussian prediction

$$
E\left[x_{i}^{2} x_{j}^{2}\right]-1=\left\{\begin{array}{ll}
2\left(\beta^{\dagger} \beta\right)_{i j}^{2} & , i \neq j \\
2 & , i=j
\end{array}=2 E\left[x_{i} x_{j}\right]^{2}\right.
$$

