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INSIGHT.DATA.CLARITY.

Scope = cross-sectional dependences among daily returns of stock prices

This work = mainly phenomenological/empirical contribution
(no focus on estimation techniques, statistical properties, etc.)

Minimal extension of structural factor model # explicit copula modeling

Notations:
» Xisa T x N matrix, stacking realizations of a (standard) random vector of size N

> p= lTXTX is the usual estimator of the (N x N) correlation matrix



CEM

INSIGHT.DATA.CLARITY.

Motivation: excess probabilities

Non-linear dependences in pairs of stock
returns exhibit non-trivial patterns. F.ex.
the excess joint probability

pj = Prob[X; < 0and X; < 0] —1/4

is predicted to be sin p;/27 by the whole
class of so-called elliptical copulas (and
even beyond !).



CEM

INSIGHT.DATA.CLARITY.

Motivation: excess probabilities

Non-linear dependences in pairs of stock
returns exhibit non-trivial patterns. F.ex.
the excess joint probability

pj = Prob[X; < 0and X; < 0] —1/4

is predicted to be sin p;/27 by the whole
class of so-called elliptical copulas (and
even beyond !).

“predicted — measured” discrepancy:

A(pj) = loglarg sin(2rp;)] — log p;
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A(pij) Vs pi

Non-linear dependences in pairs of stock 20002003
returns exhibit non-trivial patterns. F.ex. .
the excess joint probability

pj = Prob[X; < 0and X; < 0] —1/4

is predicted to be sin pjj/27 by the whole
class of so-called elliptical copulas (and R
even beyond !).

“predicted — measured” discrepancy:

A(pj) = loglarg sin(2rp;)] - log p;
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INSIGHT.DATA.CLARITY.

M
Xij = Z BiiFix + Ey

k=1

F# is always some definition of “the market”

Interpretations of factor(s):
» known/exogeneous/economic vs unknown/endogenous/algebraic
> regression vs decomposition

The meaning of the “residuals” e;?
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@F M Linear multi-factors model: estimation

INSIGHT.DATA.CLARITY.

» Input: standardized return series X, number of factors M (=10 below). not Fy
» Output: coefficients By, factor series Fy, residual series E;

We want to find the M most relevant uncorrelated and common unit-variance factors F
(T x M), and the exposures 8 (M x N) of every stock to every factor.

(XiXij)t = {Z,’% BB i #]
1 =]

We look for the matrix 878 of rank M that best fits the empirical correlation matrix.
We get the orthogonal series of F and E by daily cross-sectional regressions
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@F M Dependence structure in factors and residuals

INSIGHT.DATA.CLARITY.

Recall: X = F3 + E, with 3 (M x N)
Non-linear correlations of the obtained factors and residuals ?

2 2
(IFul?IFul?)"" (IEaPIE(P™  pe(0,2]

|

T
Rl |

Wait: “aren’t they supposed to be uncorrelated by construction ?”

2nd eigenmode

UNCORRELATED BUT NOT INDEPENDENT
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@F M Non-Gaussian multi-factors model

INSIGHT.DATA.CLARITY.

M
X =Y Byf+eg

k=1
with non-Gaussian and dependent (though uncorrelated) factors and residuals:

» One-factor model for the log-vol of linear factors fi

fx = ex exp(AkoQo + Skwk), <fk2> =1

» Two-factors model for the log-vol of residuals g;

e = n;exp(Bjoo + Bjiwi +§jj&1j), <e/2> =1- ZBI?
/
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@F M Non-Gaussian multi-factors model

INSIGHT.DATA.CLARITY.

M
Xj = Z,Bkjfk + & with

k=1 g = 1exp(BoQ + Bjwi + §;))

{fk = €k eXp(AkoQo + Skwk)

Stochastic (e.g. Gaussian):
» random signed e, 7; ,
» stochastic log-volatilities Qo, wk, & ,

Scalar parameters:
> linear weights, exposure of stock x; to factor fx: By

» exposure of factor f to logvol Qo: Axo
(+ residual factor vol: sx)

» exposure of residual g; to logvols Qq, w1: Bjo, Bj1
(+ residual residual vol: ;)
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@F M Non-Gaussian multi-factors model

INSIGHT.DATA.CLARITY.

M
Xj = Zﬁk/fk + & with

{fk = €k eXp(AkoQo + Skwk)
k=1

e =1 exp(BjoQo + Bjiwr + i)

» stochastic log-volatilities Qo, wk, @ ,

‘ Qo = dominant and common mode of log-volatility ‘

‘ w1 = log-volatility of market f; ‘
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Stock returns Xj, for the companies in the SP500 continuously traded in the period.

H 2000-2004 ‘ 2005-2009 ‘ 2000-2009 ‘
N 352 345 262
T 1255 1258 2514

Disregard ‘Basic Materials’, as mine companies are typically anti-correlated with other
sectors.
Normalize each series.
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@F M Non-linear model calibration

INSIGHT.DATA.CLARITY.

» Input: factor series Fy, residual series E;, number of factors M
» Output: coefficients Axo, Sk, Bjo, Bj1, Sj, log-volatilities series Qu, w1

Taking advantage of the exponential structures in the definition of the random
volatilities, predictions of arbitrary p-order absolute correlations can be expressed
simply:

1 (|FulP1Fal®)
—log ———+—="- = AkA 0 SkS, 1
7 g (Fw Y (FalP) koA + k/(’y(P)-i- K k) (1)

1 (IFulPEal”) _ _
2 log (FulPY(Edl?) — AkoBio + dk1A11Bi (2)
1 log (IE4l°| Eql°)

TE PV (E ey = BoBo+ BBy + 05 + 55 3
5190 (B oy By ) = BoBo + BBy +i(7(p) +33) 3)
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@ F M Volatility exposures: results (A)

INSIGHT.DATA.CLARITY.

M
. fk = exexp(Axo + S
X = Z Btk + € with { K ek €XP(AroSo + Skwk)

6 = nexp(BoQo + Bjiwr + $;5)

k=1
2009-2012
2 | | | | | | | | | |
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Volatility exposures: results (B)

M
Xj = Zﬁkjfk + € with

{fk = €k eXp(AkoQo + Skwk)
k=1

e = n;exp(BjoQo + Bjiwr + §jiy)

2000-2004

- |
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Then the series of Q0, w1 are retrieved: from
log|ej| = Q0B + w1 Bj1 + (@;8; + log |n])
we design the linear cross-sectional regression
log |E¢.| — (log |E¢]) = (R0 wi)(Bo Bi)' +e

and solve it date-by-date with a Feasible GLS.
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1st factor of the model: |f;| = |e;| e™1«t g0

Stock index volatility: (/(t)%) ~ o(t)?p(t)

2000-2004
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@ F M Reconstructing F

INSIGHT.DATA.CLARITY.

1st factor of the model: |f;| = |e;| e™1«t g0
Stock index volatility: (/(t)%) ~ o(t)?p(t)

2005-2009

first factor (abs) —— first factor reconstructed
— first factor reconstructed _| — omega0-contribution
—— omega0’-contribution

T T T T T T T T T T
2005-01 2007-01 2009-01 2005-01 2007-01 2009-01

1 1
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pj = Prob[x; < 0and x; < 0] — 1/4

loglarg sin(2np;)/ ] vs pj
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Horizontal: elliptical copulas
Black: non-parametric fit
Red: model prediction
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@ F M Take-home messages

INSIGHT.DATA.CLARITY.

v

Stock-returns exhibit non-trivial cross-sectional non-linear dependences
Factor models allow to account for these fine-structure effects. . .

v

v

... provided factors and residuals are orthogonal but not independent
» A common mode of log-vol Qq affecting all factors and residuals

v

The residual log-vol of the market factor wq affecting all stocks’ residuals

v

minimal extension of factor models = intuitive (# abstract copulas)
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Table: Economic sectors according to Bloomberg classification, with corresponding number of
individuals for each period.

Bloomberg sector Code || 2000-04 | 2005-09 | 2000-09 ||
Communications #3 33 25 18
Consumer, Cyclical #4 60 49 40
Consumer, Non-Cyclical #5 67 75 53
Energy #7 19 21 15
Financial #8 57 55 37
Industrial #11 51 50 42
Technology #13 38 43 33
Utilities #14 27 27 24
Total number of firms (N) 352 345 262
Total number of days (T) 1255 1258 2514
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@ F M Appendix: Technicalities

INSIGHT.DATA.CLARITY.

It is convenient to introduce the function

M..(a+b)
M..(@)M..(b)

where M,,(p) = E[exp(pwi)] is the Moment Generating Function of w;.

¢,(a, b) =

w; Gaussian for the presentation: M., (p) = exp(p?/2)

But in the general case, developping in cumulants, M., is the exponential of a
polynomial. Typically, with

w)=0 (Wf)=1 WH=¢ (W)=3+r

one gets

®,(a, b) = exp (ab+ C’(a b+ ab®) + —(2a b+3ab° + 2ab3)>
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Similarly, the quantity
E [|¢|*] (3 +p)
ca(p) = =/
)= Elepr =V TR
stands for the normalized d-moment of the abs of Gaussian variables.
The log version will be used in the following

1(p) = 25 log ca(p)

f.ex. v(2) = log(3)/4.
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@F M Factors and residuals: non-linear

INSIGHT.DATA.CLARITY.

Keep in mind:

M
Xj = Zﬂkjfk + € with

{fk = €k eXp(AkoQo + Skwk)
k=1

e = mn;exp(BjoS + Bjiwr + ;i)

Factor-Factor:

E[If[P1f]°] 8w
m = ®o(pAko; PAN) (Ca(P)‘bk(PSm PSk)) 4)

Factor-Residual:

E|fPleil”] , - \oki
W = ®o(pAko, PBio)®1(pA11, pBi1) (5)
Residual-Residual:

Elleil"lgl"] o o ~ %
WE[I\G‘/V’] = ®o(pBio, PBjo)®1(pBi1, pPBj1) (Ca(P)‘Doo (psi, PSI)) (6)
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Kl

+(1+ 26,-,-)(1 -3 ;3,%) S B0 (2Ak0, 2Bio) @1 (2A11, 2By )k
! k

+(1+25) (1= 32 87) D2 57 ®0(2Ar0, 2Bo) @1 (211, 2By1) ¥
! k

S
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5
E[szx,'z] = Z (5,3,5,/? + 25kiﬂkjﬁﬁ5/j) b0 (2Ak0, 2A10) (% -3 dp(2sk, 25k)) "
w

+(1+ 26;,')(1 -> [3/?) 7 Be00(2Ak0, 2Bio) 1 (2A11, 2B, ) k1
] K

+(1+26) (1= 32 8F) D Auo(2Ar0, 2Bo) 1 (2411, 26;1) K
] K

S

+(1=2260) (1 = 32 8F) @0(2Bo. 2Bo)®1(2B:1, 2B1) (30 (251, 25))
! !

When all the A’s and B’s are zero, we get back the usual Gaussian prediction

t 2 . .
Elxxf] -1 = {5 120 o pny
=1
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