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Definitions and notations

Scope = cross-sectional dependences among daily returns of stock prices

This work = mainly phenomenological/empirical contribution
(no focus on estimation techniques, statistical properties, etc.)

Minimal extension of structural factor model ̸= explicit copula modeling

Notations:
I X is a T × N matrix, stacking realizations of a (standard) random vector of size N

I ρ =
1
T

X †X is the usual estimator of the (N × N) correlation matrix



Definitions and notations

Scope = cross-sectional dependences among daily returns of stock prices

This work = mainly phenomenological/empirical contribution
(no focus on estimation techniques, statistical properties, etc.)

Minimal extension of structural factor model ̸= explicit copula modeling

Notations:
I X is a T × N matrix, stacking realizations of a (standard) random vector of size N

I ρ =
1
T

X †X is the usual estimator of the (N × N) correlation matrix



Definitions and notations

Scope = cross-sectional dependences among daily returns of stock prices

This work = mainly phenomenological/empirical contribution
(no focus on estimation techniques, statistical properties, etc.)

Minimal extension of structural factor model ̸= explicit copula modeling

Notations:
I X is a T × N matrix, stacking realizations of a (standard) random vector of size N

I ρ =
1
T

X †X is the usual estimator of the (N × N) correlation matrix



Definitions and notations

Scope = cross-sectional dependences among daily returns of stock prices

This work = mainly phenomenological/empirical contribution
(no focus on estimation techniques, statistical properties, etc.)

Minimal extension of structural factor model ̸= explicit copula modeling

Notations:
I X is a T × N matrix, stacking realizations of a (standard) random vector of size N

I ρ =
1
T

X †X is the usual estimator of the (N × N) correlation matrix



Motivation: excess probabilities

Non-linear dependences in pairs of stock
returns exhibit non-trivial patterns. F.ex.
the excess joint probability

pij = Prob[Xti < 0 and Xtj < 0]− 1/4

is predicted to be sin ρij/2π by the whole
class of so-called elliptical copulas (and
even beyond !).

“predicted – measured” discrepancy:

∆(ρij) = log[arg sin(2πpij)]− log ρij

∆(ρij) vs ρij
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Linear multi-factors model

Xtj =
M∑

k=1

βkjFtk + Etj

Ft1 is always some definition of “the market”

Interpretations of factor(s):
I known/exogeneous/economic vs unknown/endogenous/algebraic
I regression vs decomposition

The meaning of the “residuals” ej?
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Linear multi-factors model: estimation

I Input: standardized return series Xti , number of factors M (=10 below). not Ftk

I Output: coefficients βki , factor series Ftk , residual series Eti

We want to find the M most relevant uncorrelated and common unit-variance factors F
(T × M), and the exposures β (M × N) of every stock to every factor.

⟨XtiXtj⟩t =

{∑M
k=1 βkiβkj , i ̸= j

1 , i = j

We look for the matrix β†β of rank M that best fits the empirical correlation matrix.
We get the orthogonal series of F and E by daily cross-sectional regressions



Linear multi-factors model: estimation

I Input: standardized return series Xti , number of factors M (=10 below). not Ftk

I Output: coefficients βki , factor series Ftk , residual series Eti

We want to find the M most relevant uncorrelated and common unit-variance factors F
(T × M), and the exposures β (M × N) of every stock to every factor.

⟨XtiXtj⟩t =

{∑M
k=1 βkiβkj , i ̸= j

1 , i = j

We look for the matrix β†β of rank M that best fits the empirical correlation matrix.
We get the orthogonal series of F and E by daily cross-sectional regressions



Linear multi-factors model: estimation

I Input: standardized return series Xti , number of factors M (=10 below). not Ftk

I Output: coefficients βki , factor series Ftk , residual series Eti

We want to find the M most relevant uncorrelated and common unit-variance factors F
(T × M), and the exposures β (M × N) of every stock to every factor.

⟨XtiXtj⟩t =

{∑M
k=1 βkiβkj , i ̸= j

1 , i = j

We look for the matrix β†β of rank M that best fits the empirical correlation matrix.
We get the orthogonal series of F and E by daily cross-sectional regressions



Linear multi-factors model: estimation

I Input: standardized return series Xti , number of factors M (=10 below). not Ftk

I Output: coefficients βki , factor series Ftk , residual series Eti

We want to find the M most relevant uncorrelated and common unit-variance factors F
(T × M), and the exposures β (M × N) of every stock to every factor.

⟨XtiXtj⟩t =

{∑M
k=1 βkiβkj , i ̸= j

1 , i = j

We look for the matrix β†β of rank M that best fits the empirical correlation matrix.
We get the orthogonal series of F and E by daily cross-sectional regressions



Linear multi-factors model: estimation

I Input: standardized return series Xti , number of factors M (=10 below). not Ftk

I Output: coefficients βki , factor series Ftk , residual series Eti

We want to find the M most relevant uncorrelated and common unit-variance factors F
(T × M), and the exposures β (M × N) of every stock to every factor.

⟨XtiXtj⟩t =

{∑M
k=1 βkiβkj , i ̸= j

1 , i = j

We look for the matrix β†β of rank M that best fits the empirical correlation matrix.
We get the orthogonal series of F and E by daily cross-sectional regressions



Dependence structure in factors and residuals

Recall: X = Fβ + E , with β (M × N)

Non-linear correlations of the obtained factors and residuals ?

⟨|Ftk |p|Ftl |p⟩1/p2
, ⟨|Eti |p|Etj |p⟩1/p2

, p ∈ (0, 2]

Wait: “aren’t they supposed to be uncorrelated by construction ?”

UNCORRELATED BUT NOT INDEPENDENT
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Non-Gaussian multi-factors model

xj =
M∑

k=1

βkj fk + ej

with non-Gaussian and dependent (though uncorrelated) factors and residuals:

I One-factor model for the log-vol of linear factors fk

fk = ϵk exp(Ak0Ω0 + skωk ), ⟨f 2
k ⟩ = 1

I Two-factors model for the log-vol of residuals ej

ej = ηj exp(Bj0Ω0 + Bj1ω1 + s̃jj ω̃j), ⟨e2
j ⟩ = 1 −

∑
l

β2
lj
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I stochastic log-volatilities Ω0, ωk , ω̃j ,

Scalar parameters:
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I exposure of factor fk to logvol Ω0: Ak0

(+ residual factor vol: sk )
I exposure of residual ej to logvols Ω0, ω1: Bj0,Bj1

(+ residual residual vol: s̃jj )
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Dataset

Stock returns Xti , for the companies in the SP500 continuously traded in the period.

2000–2004 2005–2009 2000–2009
N 352 345 262
T 1255 1258 2514

Disregard ‘Basic Materials’, as mine companies are typically anti-correlated with other
sectors.
Normalize each series.



Non-linear model calibration

I Input: factor series Ftk , residual series Eti , number of factors M
I Output: coefficients Ak0, sk , Bj0,Bj1, s̃jj , log-volatilities series Ωt0, ωt1

Taking advantage of the exponential structures in the definition of the random
volatilities, predictions of arbitrary p-order absolute correlations can be expressed
simply:

1
p2 log

⟨|Ftk |p|Ftl |p⟩
⟨|Ftk |p⟩⟨|Ftl |p⟩

= Ak0Al0 + δkl

(
γ(p) + sk sk

)
(1)

1
p2 log

⟨|Ftk |p|Eti |p⟩
⟨|Ftk |p⟩⟨|Eti |p⟩

= Ak0Bi0 + δk1A11Bi1 (2)

1
p2 log

⟨|Eti |p|Etj |p⟩
⟨|Eti |p⟩⟨|Etj |p⟩

= Bi0Bj0 + Bi1Bj1 + δij

(
γ(p) + s̃i s̃i

)
(3)
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Volatility exposures: results (B)

xj =
M∑

k=1

βkj fk + ej with

{
fk = ϵk exp(Ak0Ω0 + skωk )

ej = ηj exp(Bj0Ω0 + Bj1ω1 + s̃jj ω̃j)
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Reconstructing log-vol series

Then the series of Ωt0, ωt1 are retrieved: from

log |ej | = Ω0Bj0 + ω1Bj1 + (ω̃j s̃jj + log |ηj |)

we design the linear cross-sectional regression

log |Et·| − ⟨log |Et·|⟩ =
(
Ωt0 ωt1

)(
B·0 B·1

)†
+ εt·

and solve it date-by-date with a Feasible GLS.
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Reconstructing Ft1

1st factor of the model: |f1| = |ϵ1| eA11ω1 eA10Ω0

Stock index volatility: ⟨I(t)2⟩ ≈ σ(t)2ρ(t)

2000-2004
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Reconstructing Ft1

1st factor of the model: |f1| = |ϵ1| eA11ω1 eA10Ω0

Stock index volatility: ⟨I(t)2⟩ ≈ σ(t)2ρ(t)
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Initial motivation: excess probabilities

pij = Prob[xi < 0 and xj < 0]− 1/4

log[arg sin(2πpij)/ρij ] vs ρij

Horizontal: elliptical copulas
Black: non-parametric fit
Red: model prediction



Take-home messages

I Stock-returns exhibit non-trivial cross-sectional non-linear dependences
I Factor models allow to account for these fine-structure effects. . .
I . . . provided factors and residuals are orthogonal but not independent
I A common mode of log-vol Ω0 affecting all factors and residuals
I The residual log-vol of the market factor ω1 affecting all stocks’ residuals
I minimal extension of factor models = intuitive ( ̸= abstract copulas)
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Dataset

Table: Economic sectors according to Bloomberg classification, with corresponding number of
individuals for each period.

Bloomberg sector Code 2000–04 2005–09 2000–09
Communications # 3 33 25 18
Consumer, Cyclical # 4 60 49 40
Consumer, Non-Cyclical # 5 67 75 53
Energy # 7 19 21 15
Financial # 8 57 55 37
Industrial #11 51 50 42
Technology #13 38 43 33
Utilities #14 27 27 24
Total number of firms (N) 352 345 262
Total number of days (T ) 1255 1258 2514



Appendix: Technicalities

It is convenient to introduce the function

Φl(a, b) =
Mωl(a+b)

Mωl(a)Mωl(b)

where Mωl (p) ≡ E [exp(pωl)] is the Moment Generating Function of ωl .

ωl Gaussian for the presentation: Mωl (p) = exp(p2/2)

But in the general case, developping in cumulants, Mωl is the exponential of a
polynomial. Typically, with

⟨ωl⟩ = 0 ⟨ω2
l ⟩ = 1 ⟨ω3

l ⟩ = ζl ⟨ω4
l ⟩ = 3 + κl

one gets

Φl(a, b) = exp
(

ab +
ζl

2
(a2b + ab2) +

κl

12
(2a3b + 3a2b2 + 2ab3)

)
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where Mωl (p) ≡ E [exp(pωl)] is the Moment Generating Function of ωl .

ωl Gaussian for the presentation: Mωl (p) = exp(p2/2)

But in the general case, developping in cumulants, Mωl is the exponential of a
polynomial. Typically, with

⟨ωl⟩ = 0 ⟨ω2
l ⟩ = 1 ⟨ω3
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Appendix: Technicalities

Similarly, the quantity

ca(p) =
E
[
|ϵ|2p]

E [|ϵ|p]2
=

√
π
Γ( 1

2 + p)

Γ( 1+p
2 )2

stands for the normalized d-moment of the abs of Gaussian variables.
The log version will be used in the following

γ(p) =
1
p2 log ca(p),

f.ex. γ(2) = log(3)/4.



Factors and residuals: non-linear

Keep in mind:

xj =
M∑

k=1

βkj fk + ej with

{
fk = ϵk exp(Ak0Ω0 + skωk )

ej = ηj exp(Bj0Ω0 + Bj1ω1 + s̃jj ω̃j)

Factor-Factor:

E [|fk |p|fl |p]
E [|fk |p]E [|fl |p]

= Φ0(pAk0, pAl0)
(

ca(p)Φk (psk , psk )
)δkl

(4)

Factor-Residual:

E [|fk |p|ei |p]
E [|fk |p]E [|ei |p]

= Φ0(pAk0, pBi0)Φ1(pA11, pBi1)
δk1 (5)

Residual-Residual:

E [|ei |p|ej |p]
E [|ei |p]E [|ej |p]

= Φ0(pBi0, pBj0)Φ1(pBi1, pBj1)
(

ca(p)Φ∞(ps̃i , ps̃i)
)δij

(6)
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Quadratic correlations

E [x2
i x2

j ] =
∑

kl

(
β

2
kiβ

2
lj + 2βkiβkjβliβlj

)
Φ0(2Ak0, 2Al0)

(
1
3 · 3 · Φk (2sk , 2sk )

)δkl

+ (1 + 2δij )
(

1 −
∑

l

β
2
li

)∑
k

β
2
kjΦ0(2Ak0, 2Bi0)Φ1(2A11, 2Bi1)

δk1

+ (1 + 2δij )
(

1 −
∑

l

β
2
lj

)∑
k

β
2
kiΦ0(2Ak0, 2Bj0)Φ1(2A11, 2Bj1)

δk1

+
(

1 −
∑

l

β
2
li

)(
1 −

∑
l

β
2
lj

)
Φ0(2Bi0, 2Bj0)Φ1(2Bi1, 2Bj1)

(
3Φ∞(2s̃i , 2s̃i )

)δij

When all the A’s and B’s are zero, we get back the usual Gaussian prediction

E [x2
i x2

j ]− 1 =

{
2
(
β†β

)2
ij , i ̸= j

2 , i = j
= 2 E [xixj ]
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