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ECONOMIC MODELS OF ILLIQUIDITY & BANK RUNS

I Bryant (’80) Diamond-Dybvig (’83, depositor insurance)

I Bank Runs, deterministic, static, undesirable equilibrium
I Morris-Shin (’03,’04)

I short horizon traders, Liquidity Black Holes, investors’ private
(noisy) signals

I Rochet-Vives (’04)

I still static, investors’ private (noisy) signals, lender of last resort
I He-Xiong (’09) Minca-Wissel (’15, ’16)

I dynamic continuous time model, perfect observation
I exogenous randomness for staggered debt maturities
I investors choose to roll or not to roll

I O. Gossner’s lecture (’14) : first game of timing

I diffusion model for the value of assets of the bank
I investors have private noisy signals
I investors choose a time to withdraw funds

I M. Nutz (’16) Toy model for MFG game of timing with a continuum of players



CONTINUOUS TIME BANK RUN MODEL

Inspired by Gossner’s lecture

I N depositors
I Amount of each individual (initial & final) deposit Di

0 = 1/N
I Current interest rate r
I Depositors promised return r > r
I Yt = value of the assets of the bank at time t ,
I Yt Itô process, Y0 ≥ 1
I L(y) liquidation value of bank assets if Y = y
I Bank has a credit line of size L(Yt ) at time t at rate r
I Bank uses credit line each time a depositor runs (withdraws his deposit)



BANK RUN MODEL (CONT.)

I Assets mature at time T , no transaction after that
I If YT ≥ 1 every one is paid in full
I If YT < 1 exogenous default
I Endogenous default at time t < T if depositors try to withdraw more

than L(Yt )



BANK RUN MODEL (CONT.)
Each depositor i ∈ {1, · · · ,N}

I has access to a private signal X i
t at time t

dX i
t = dYt + σdW i

t , i = 1, · · · ,N

I chooses a time τ i ∈ SX i
at which to TRY to withdraw his deposit

I collects return r until time τ i

I tries to maximize

J i (τ 1, · · · , τN) = E
[
g(τ i ,Yτ i )

]
where

I g(t ,Yt ) = e(r−r)t∧τ (L(Yt )− Nt/N)+ ∧ 1
N

I Nt number of withdrawals before t
I τ = inf{t ; L(Yt ) < Nt/N}



BANK RUN MODEL: CASE OF FULL INFORMATION

Assume
I σ = 0, i.e. Yt is public knowledge !
I the function y ↪→ L(y) is also public knowledge
I τ i ∈ SY

In ANY equilibrium
τ i = inf{t ; L(Yt ) ≤ 1}

I Depositors withdraw at the same time (run on the bank)
I Each depositor gets his deposit back (no one gets hurt!)

Highly Unrealistic

Depositors should wait longer because of noisy private signals



GAMES OF TIMING

N players, states (observations / private signals) X i
t at time t

dX i
t = dYt + σdW i

t

Yt common unobserved signal (Itô process)

dYt = µt dt + σt dW 0
t

Each player maximizes

J i (τ1, · · · , τN ) = E
[

g(τ i ,Xτ i ,Yτ i , µ
N ([0, τ i ])

]
where

I each τ i is a FX i
stopping time

I µN = 1
N
∑N

i=1 δτ i empirical distribution of the τ i ’s

I g(t , x , y , p) is the reward to a player for

I exercising his timing decision at time t when
I his private signal is X i

t = x ,
I the unobserved signal is Yt = y ,
I the proportion of players who already exercised their right is p.



ABSTRACT MFG FORMULATION

Recall {
dYt = bt dt + σt dW 0

t
dXt = dYt + σdWt ,

More generally:

1. The states of the players are given by a single measurable function

X : C([0,T ])× C([0,T ]) 7→ C([0,T ])

progressively measurable X(w0,w)t depends only upon w0
[0,t] and w[0,t],

2. X i = X(W 0,W i ) state process for player i

3. Reward / cost function F on C([0,T ])× C([0,T ])× P([0,T ])× [0,T ]
progressively measurable F (w0,w , µ, t) depends only upon w0

[0,t], w[0,t], and
µ([0, s]) for 0 ≤ s ≤ t , e.g.

F (W0,W, µ, t) = exp
(
(r̄ − r)t

)[ 1
N
∧
(

L(Yt )− µ
(
[0, t)

))+]
,



APPROXIMATE NASH EQUILIBRIA

Definition
If ε > 0, a set (τ1,∗, · · · , τN,∗) of stopping time τ i,∗ ∈ SX i is said to be
an ε-Nash equilibrium if for every i ∈ {1, · · · ,N} and τ ∈ SX i we have:

E[F (W 0,W i , µN,−i , τ i,∗)] ≥ E[F (W 0,W i , µN,−i , τ)]− ε,

µN,−i denoting the empirical distribution of
(τ1,∗, · · · , τ i−1,∗, τ i+1,∗, · · · , τN,∗).

Weak Characterization

the set of weak limits as N →∞ of εN - Nash equilibria when εN ↘ 0
coincide with the set of weak solutions of the MFG equilibrium
problem



STRONG FORMULATION OF THE MFG OF TIMING

J(µ, τ) = E[F (W 0,W , µ, τ)]

Definition
A stopping time τ∗ ∈ SX is said to be a strong MFG equilibrium if for every
τ ∈ SX we have:

J(µ, τ∗) ≥ J(µ, τ)

with µ = L(τ∗|W 0).

MFG of Timing Problem

1. Best Response Optimization: for each random environment µ solve

θ̂ ∈ arg sup
θ∈SX ,θ≤T

J(µ, θ);

2. Fixed-Point Step: find µ so that

∀t ∈ [0,T ], µ(W 0, [0, t ]) = P[θ̂ ≤ t |W 0].



WEAK MEAN FIELD EQUILIBRIUM (MFE)

Probability measure P on

Ω := C([0,T ])× C([0,T ])× P(C([0,T ])× [0,T ])× [0,T ]

such that:

1. (W 0,W ) is a Wiener process with respect to the full filtration FW 0,W ,µ,τ
+ .

2. (W 0, µ) is independent of W .

3. τ is compatible with (W 0,W , µ), in the sense that Fτt+ is conditionally

independent of FW 0,W ,µ
T given FW 0,W ,µ

t+ , for every t ∈ [0,T ].

4. The optimality condition holds:

EP [F (W 0,W , µτ , τ)] = sup
P′

EP′
[F (W 0,W , µτ , τ)],

where the supremum is over all P′ ∈ P(Ω) satisfying (1-3) as well as
P′ ◦ (W 0,W , µ)−1 = P ◦ (W 0,W , µ)−1.

5. The weak fixed point condition holds: µ = P
(
(W , τ) ∈ · |W 0, µ

)
.



SANITY CHECK

From the above definition

Assume
I F is bounded, jointly measurable,
I t 7→ F (w0,w ,m, t) is continuous for every m andW2-almost every

(w0,w)

I τ∗ is a strong MFE,

and define µ =W2(τ∗ ∈ ·|W 0). Then the measure

P =W2 ◦ (W 0,W , µ, τ∗)−1

is a weak MFE. whereW2 standard Wiener measure on C([0,T ])×C([0,T ]).



RATIONALE FOR THE COMPATIBILITY CONDITION

Working with weak limits =⇒ Loss of measurability

I If (Z ,Yn) converge weakly to (Z ,Y )

I If Yn is Z -measurable for each n,

No reason why Y should be a function of Z

We cannot expect τ to be (W 0,W , µ)-measurable after taking weak limits

Meaning of compatibility
One randomizes externally to the signal (W 0,W , µ), as long as at each time t this
randomization is conditionally independent of all future information given the history of
the signal.

Mathematically
If τ is compatible, there exists a sequence of FW 0,W ,µ-stopping times τk such that
(W 0,W , µ, τk )⇒ (W 0,W , µ, τ)



EXAMPLE OF A WEAK SOLUTION

Assumption
I F is bounded and jointly measurable,
I P([0,T ])× [0,T ] 3 (m, t) 7→ F (w0,w ,m, t) is continuous forW2-almost every

(w0,w) ∈ C([0,T ])2

Theorem If εn ↘ 0, and ~τ n = (τn
1 , . . . , τ

n
n ) is an εn-Nash equilibrium for the n-player

game for each n, and

Pn =
1
n

n∑
i=1

P ◦
(

W 0,W i ,
1
n

n∑
i=1

δ(W i ,τn
i ), τ

n
i

)−1

.

Then (Pn)∞n=1 is tight, and every weak limit is a weak MFE.

Theorem Let P be a weak MFE. Then there exist εn → 0 and εn-Nash equilibria
~τ n = (τn

1 , . . . , τ
n
n ) such that

P = lim
n→∞

1
n

n∑
i=1

P ◦
(

W 0,W i ,
1
n

n∑
i=1

δ(W i ,τn
i ), τ

n
i

)−1

.

In fact, if τ∗ = τ∗(B,W ) is a strong MFE in the sense of Definition ??, then we can
take ~τ n of the form τn

i = τ∗(B,W i ).



BACK TO THE SEARCH FOR STRONG EQUILIBRIA

Notation
J(µ, τ) = E[F (W 0,W , µ, τ)]

Recall
A stopping time τ∗ ∈ SX is said to be a strong MFG equilibrium if for every
τ ∈ SX we have:

J(µ, τ∗) ≥ J(µ, τ)

with µ = L(τ∗|W 0).

MFG of Timing Problem

1. Best Response Optimization: for each random environment µ solve

θ̂ ∈ arg sup
θ∈SX ,θ≤T

J(µ, θ);

2. Fixed-Point Step: find µ so that

∀t ∈ [0,T ], µ(W 0, [0, t ]) = P[θ̂ ≤ t |W 0].



ASSUMPTIONS

(C) For each fixed (w0,w) ∈ C([0,T ])× C([0,T ]), (µ, t) 7→ F (w0,w , µ, t) is
continuous.

(SC) For each fixed (w0,w , µ) ∈ C([0,T ])× C([0,T ])× P([0,T ]), t 7→ F (w0,w , µ, t)
is upper semicontinuous.

(ID) For any progressively measurable random environments
µ, µ′ : C([0,T ]) 7→ P([0,T ]) s.t. µ(w0) ≤ µ′(w0) a.s.

Mt = F (W 0,W , µ′(W 0), t)− F (W 0,W , µ(W ), t)

is a sub-martingale.

(ID) holds when F has increasing differences t ≤ t ′ and µ ≤ µ′ imply:

F (w0,w , µ′, t ′)− F (w0,w , µ′, t) ≥ F (w0,w , µ, t ′)− F (w0,w , µ, t).

(ID) =⇒ the expected reward J has also increasing differences

J(µ′, τ ′)− J(µ′, τ) ≥ J(µ, τ ′)− J(µ, τ)

Major Disappointment: ifF (w0,w , µ, t) = G(µ[0, t]) for some real-valued continuous
function G on [0, 1] which we assume to be differentiable on (0, 1), if F satisfies
assumption (ID), then G is constant!



FIXED POINT RESULTS ON ORDER LATTICES
Recall: A partially ordered set (S,≤) is said to be a lattice if:

x ∨ y = inf{z ∈ S; z ≥ x , z ≥ y} ∈ S
and

x ∧ y = sup{z ∈ S; z ≤ x , z ≤ y} ∈ S,

for all x , y ∈ S. A lattice (S,≤) is said to be complete if every subset S ⊂ S
has a greatest lower bound inf S and a least upper bound sup S, with the
convention that inf ∅ = supS and sup ∅ = infS.

Example: The set S of stopping times of a right continuous filtration
F = (Ft )t≥0

Fact 1: If S is a complete lattice and Φ : S 3 x 7→ Φ(x) ∈ S is order
preserving in the sense that Φ(x) ≤ Φ(y) whenever x , y ∈ S are such that
x ≤ y , the set of fixed points of Φ is a non-empty complete lattice.

Another definition: A real valued function f on a lattice (S,≤) is said to be
supermodular if for all x , y ∈ S

f (x ∨ y) + f (x ∧ y) ≥ f (x) + f (y).



EXISTENCE OF STRONG EQUILIBRIA

Under assumptions (SC) and (ID) there exists a strong equilibrium.

I SX stopping times for the filtration of X
I M0(T ) random FW0 -adapted probability measures on [0,T ]

M0
T 3 µ 7→ Φ(µ) = arg max

τ∈SX
J(µ, τ)

is nondecreasing in the strong set order
I Φ(µ) is a nonempty complete sub-lattice of SX.
I Φ(µ) has a maximum φ∗(µ) and a minimum φ∗(µ)
I φ∗ :M0

T → SX is non-decreasing
I ψ : SX →M0

T defined by ψ(τ) = L(τ |W 0) is monotone
I φ∗ ◦ ψ is a monotone map from SX to itself
I Since SX is a complete lattice Tarski’s fixed point Theorem gives a fixed point τ

i.e. a strong equilibrium for the mean field game of timing



EXISTENCE OF STRONG EQUILIBRIA

If (C) holds there exist strong equilibria τ∗ and θ∗ such that for any
strong equilibrium τ we have θ∗ ≤ τ ≤ τ∗ a.s.

I τ0 ≡ T ,
I τi = φ∗ ◦ ψ(τi−1) for i ≥ 1 by induction.
I τ1 ≤ τ0,
I If τi ≤ τi−1, the monotonicity of φ∗ ◦ ψ implies

τi+1 = φ∗ ◦ ψ(τi ) ≤ φ∗ ◦ ψ(τi−1) = τi .
I Define τ∗ = limi→∞ τi
I τ∗ ∈ SX (right continuous filtration)
I limi→∞ ψ(τi ) = ψ(τ∗)
I For any σ ∈ SX J(ψ(τi ), τi+1) ≥ J(ψ(τi ), σ)
I (dominated convergence + F continuous)⇒ J(ψ(τ∗), τ∗) ≥ J(ψ(τ∗), σ).
I τ∗ is a mean field game of timing equilibrium in the strong sense.



EXISTENCE OF STRONG EQUILIBRIA (CONT.)

I θ0 ≡ 0,
I θi = φ∗ ◦ ψ(θi−1) for i ≥ 1.
I θ0 ≤ θ1, and as before θi−1 ≤ θi .
I Define θ∗ as the a.s. limit of the non-decreasing sequence of

stopping times (θi )i≥1.
I As before θ∗ ∈ SX is a fixed point of the map φ∗ ◦ ψ and thus a

strong equilibrium.



EXISTENCE OF STRONG EQUILIBRIA (CONT.)

I If τ is any equilibrium,
I τ is a fixed point of the set-valued map Φ ◦ ψ

τ ∈ Φ(ψ(τ))

I θ0 = 0 ≤ τ ≤ T = τ0

I Apply φ∗ ◦ ψ and φ∗ ◦ ψ repeatedly to the left and right sides
I Get θn ≤ τ ≤ τn for each n,
I In the limit θ∗ ≤ τ ≤ τ∗.


