MEAN FIELD GAMES OF TIMING

René Carmona

Department of Operations Research & Financial Engineering Program in Applied & Computational Mathematics Princeton University

Recent Advances in Financial Mathematics, Paris Jan. 2017

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

SOURCE

talk based on joint work with F. Delarue & D. Lacker

R.C. & F. Delarue: Probabilistic Theory of Mean Field Games

- vol. I, Mean Field FBSDEs, Control, and Games.
- vol. II, Mean Field Games with Common Noise and Master Equations.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Stochastic Analysis and Applications. Springer Verlag, 2017.

ECONOMIC MODELS OF ILLIQUIDITY & BANK RUNS

- **Bryant** ('80) **Diamond-Dybvig** ('83, depositor insurance)
 - Bank Runs, deterministic, static, undesirable equilibrium
- Morris-Shin ('03,'04)
 - short horizon traders, Liquidity Black Holes, investors' private (noisy) signals
- Rochet-Vives ('04)
 - still static, investors' private (noisy) signals, lender of last resort
- He-Xiong ('09) Minca-Wissel ('15, '16)
 - dynamic continuous time model, perfect observation
 - exogenous randomness for staggered debt maturities
 - investors choose to roll or not to roll
- O. Gossner's lecture ('14) : first game of timing
 - diffusion model for the value of assets of the bank
 - investors have private noisy signals
 - investors choose a time to withdraw funds
- M. Nutz ('16) Toy model for MFG game of timing with a continuum of players

(ロ) (同) (三) (三) (三) (○) (○)

CONTINUOUS TIME BANK RUN MODEL

Inspired by Gossner's lecture

- N depositors
- Amount of each individual (initial & final) deposit $D_0^i = 1/N$
- Current interest rate r
- Depositors promised return $\overline{r} > r$
- Y_t = value of the assets of the bank at time t,
- Y_t Itô process, $Y_0 \ge 1$
- L(y) liquidation value of bank assets if Y = y
- ▶ Bank has a credit line of size $L(Y_t)$ at time t at rate \bar{r}
- Bank uses credit line each time a depositor runs (withdraws his deposit)

BANK RUN MODEL (CONT.)

- Assets mature at time T, no transaction after that
- If $Y_T \ge 1$ every one is paid in full
- If $Y_T < 1$ exogenous default
- Endogenous default at time t < T if depositors try to withdraw more than L(Y_t)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

BANK RUN MODEL (CONT.)

Each depositor $i \in \{1, \cdots, N\}$

has access to a private signal Xⁱ_t at time t

$$dX_t^i = dY_t + \sigma dW_t^i, \qquad i = 1, \cdots, N$$

- chooses a time $\tau^i \in S^{\chi^i}$ at which to **TRY** to withdraw his deposit
- collects return \overline{r} until time τ^i
- tries to maximize

$$J^i(au^1,\cdots, au^{\sf N})=\mathbb{E}\Big[g(au^i, extsf{Y}_{ au^i})\Big]$$

where

- $g(t, Y_t) = e^{(\overline{r}-r)t\wedge\tau}(L(Y_t) N_t/N)^+ \wedge \frac{1}{N}$
- Nt number of withdrawals before t
- $\tau = \inf\{t; L(Y_t) < N_t/N\}$

BANK RUN MODEL: CASE OF FULL INFORMATION

Assume

- $\sigma = 0$, i.e. Y_t is public knowledge !
- the function $y \hookrightarrow L(y)$ is also public knowledge

•
$$\tau^i \in \mathcal{S}^{\gamma}$$

In ANY equilibrium

$$\tau^i = \inf\{t; \ L(Y_t) \le 1\}$$

- Depositors withdraw at the same time (run on the bank)
- Each depositor gets his deposit back (no one gets hurt!)

Highly Unrealistic

Depositors should wait longer because of noisy private signals

GAMES OF TIMING

N players, states (observations / private signals) X_t^i at time t

$$dX_t^i = dY_t + \sigma dW_t^i$$

Yt common unobserved signal (Itô process)

$$dY_t = \mu_t dt + \sigma_t dW_t^0$$

Each player maximizes

$$J^{i}(\tau^{1},\cdots,\tau^{N})=\mathbb{E}\Big[g(\tau^{i},X_{\tau^{i}},\mathsf{Y}_{\tau^{i}},\overline{\mu}^{N}([0,\tau^{i}])\Big]$$

where

- each τ^i is a \mathcal{F}^{χ^i} stopping time
- $\overline{\mu}^N = \frac{1}{N} \sum_{i=1}^N \delta_{\tau^i}$ empirical distribution of the τ^i 's
- g(t, x, y, p) is the reward to a player for
 - exercising his timing decision at time t when
 - his private signal is $X_t^i = x$,
 - the unobserved signal is $Y_t = y$,
 - the proportion of players who already exercised their right is p.

ABSTRACT MFG FORMULATION

Recall

$$dY_t = b_t dt + \sigma_t dW_t^0$$

$$dX_t = dY_t + \sigma dW_t,$$

More generally:

1. The states of the players are given by a single measurable function

 $X: \mathcal{C}([0,T]) \times \mathcal{C}([0,T]) \mapsto \mathcal{C}([0,T])$

progressively measurable $X(w^0, w)_t$ depends only upon $w^0_{[0,t]}$ and $w_{[0,t]}$,

- 2. $X^i = X(W^0, W^i)$ state process for player *i*
- 3. Reward / cost function F on $C([0, T]) \times C([0, T]) \times \mathcal{P}([0, T]) \times [0, T]$ progressively measurable $F(w^0, w, \mu, t)$ depends only upon $w^0_{[0,t]}$, $w_{[0,t]}$, and $\mu([0,s])$ for $0 \le s \le t$, e.g.

$$F(\mathbf{W}^0, \mathbf{W}, \mu, t) = \exp((\bar{r} - r)t) \left[\frac{1}{N} \wedge \left(L(Y_t) - \mu([0, t])\right)^+\right]$$

APPROXIMATE NASH EQUILIBRIA

Definition

If $\epsilon > 0$, a set $(\tau^{1,*}, \cdots, \tau^{N,*})$ of stopping time $\tau^{i,*} \in S_{X^i}$ is said to be an ϵ -Nash equilibrium if for every $i \in \{1, \cdots, N\}$ and $\tau \in S_{X^i}$ we have:

$$\mathbb{E}[F(W^{0}, W^{i}, \overline{\mu}^{N, -i}, \tau^{i,*})] \geq \mathbb{E}[F(W^{0}, W^{i}, \overline{\mu}^{N, -i}, \tau)] - \epsilon,$$

 $\overline{\mu}^{N,-i}$ denoting the empirical distribution of $(\tau^{1,*},\cdots,\tau^{i-1,*},\tau^{i+1,*},\cdots,\tau^{N,*}).$

Weak Characterization

the set of weak limits as $N \to \infty$ of ϵ_N - Nash equilibria when $\epsilon_N \searrow 0$ coincide with the set of weak solutions of the MFG equilibrium problem

STRONG FORMULATION OF THE MFG OF TIMING

$$J(\mu,\tau) = \mathbb{E}[F(W^0, W, \mu, \tau)]$$

Definition

A stopping time $\tau^* \in S_X$ is said to be a strong MFG equilibrium if for every $\tau \in S_X$ we have:

$$J(\mu, au^*) \geq J(\mu, au)$$

with $\mu = \mathcal{L}(\tau^* | W^0)$.

MFG of Timing Problem

1. Best Response Optimization: for each random environment μ solve

$$\hat{\theta} \in \arg \sup_{\theta \in \mathcal{S}_X, \theta \leq T} J(\mu, \theta);$$

2. *Fixed-Point Step*: find μ so that

$$\forall t \in [0, T], \ \mu(W^0, [0, t]) = \mathbb{P}[\hat{\theta} \leq t | W^0].$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

WEAK MEAN FIELD EQUILIBRIUM (MFE)

Probability measure P on

$$\Omega := \mathcal{C}([0,T]) \times \mathcal{C}([0,T]) \times \mathcal{P}(\mathcal{C}([0,T]) \times [0,T]) \times [0,T]$$

such that:

- 1. (W^0, W) is a Wiener process with respect to the full filtration $\mathbb{F}^{W^0, W, \mu, \tau}_+$.
- 2. (W^0, μ) is independent of *W*.
- 3. τ is **compatible** with (W^0, W, μ) , in the sense that \mathcal{F}_{t+}^{τ} is conditionally independent of $\mathcal{F}_{T}^{W^0,W,\mu}$ given $\mathcal{F}_{t+}^{W^0,W,\mu}$, for every $t \in [0, T]$.
- 4. The optimality condition holds:

$$\mathbb{E}^{P}[F(W^{0}, W, \mu^{\tau}, \tau)] = \sup_{P'} \mathbb{E}^{P'}[F(W^{0}, W, \mu^{\tau}, \tau)],$$

(日) (日) (日) (日) (日) (日) (日)

where the supremum is over all $P' \in \mathcal{P}(\Omega)$ satisfying (1-3) as well as $P' \circ (W^0, W, \mu)^{-1} = P \circ (W^0, W, \mu)^{-1}$.

5. The weak fixed point condition holds: $\mu = P((W, \tau) \in \cdot | W^0, \mu)$.

SANITY CHECK

From the above definition

Assume

- ► *F* is bounded, jointly measurable,
- ► $t \mapsto F(w^0, w, m, t)$ is continuous for every *m* and W^2 -almost every (w^0, w)
- τ^* is a strong MFE,

and define $\mu = \mathcal{W}^2(\tau^* \in \cdot | W^0)$. Then the measure

$$\boldsymbol{P} = \boldsymbol{\mathcal{W}}^2 \circ (\boldsymbol{W}^0, \boldsymbol{W}, \boldsymbol{\mu}, \boldsymbol{\tau}^*)^{-1}$$

is a weak MFE. where W^2 standard Wiener measure on $C([0, T]) \times C([0, T])$.

RATIONALE FOR THE COMPATIBILITY CONDITION

Working with weak limits \Longrightarrow Loss of measurability

- If (Z, Y_n) converge weakly to (Z, Y)
- If Y_n is Z-measurable for each n,

No reason why Y should be a function of Z

We cannot expect τ to be (W^0, W, μ) -measurable after taking weak limits

Meaning of compatibility

One randomizes externally to the signal (W^0 , W, μ), as long as at each time *t* this randomization is conditionally independent of all future information given the history of the signal.

Mathematically

If τ is compatible, there exists a sequence of $\mathbb{F}^{W^0, W, \mu}$ -stopping times τ_k such that $(W^0, W, \mu, \tau_k) \Rightarrow (W^0, W, \mu, \tau)$

EXAMPLE OF A WEAK SOLUTION

Assumption

- F is bounded and jointly measurable,
- ▶ $\mathcal{P}([0, T]) \times [0, T] \ni (m, t) \mapsto F(w^0, w, m, t)$ is continuous for \mathcal{W}^2 -almost every $(w^0, w) \in \mathcal{C}([0, T])^2$

Theorem If $\epsilon_n \searrow 0$, and $\vec{\tau}^n = (\tau_1^n, \dots, \tau_n^n)$ is an ϵ_n -Nash equilibrium for the *n*-player game for each *n*, and

$$P_n = \frac{1}{n} \sum_{i=1}^n \mathbb{P} \circ \left(W^0, W^i, \frac{1}{n} \sum_{i=1}^n \delta_{(W^i, \tau_i^n)}, \tau_i^n \right)^{-1}.$$

Then $(P_n)_{n=1}^{\infty}$ is tight, and every weak limit is a weak MFE.

Theorem Let *P* be a weak MFE. Then there exist $\epsilon_n \to 0$ and ϵ_n -Nash equilibria $\vec{\tau}^n = (\tau_1^n, \ldots, \tau_n^n)$ such that

$$P = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{P} \circ \left(W^0, W^i, \frac{1}{n} \sum_{i=1}^{n} \delta_{(W^i, \tau_i^n)}, \tau_i^n \right)^{-1}$$

In fact, if $\tau^* = \tau^*(B, W)$ is a strong MFE in the sense of Definition **??**, then we can take $\vec{\tau}^n$ of the form $\tau_i^n = \tau^*(B, W^i)$.

BACK TO THE SEARCH FOR STRONG EQUILIBRIA

Notation

$$J(\mu,\tau) = \mathbb{E}[F(W^0, W, \mu, \tau)]$$

Recall

A stopping time $\tau^* \in S_X$ is said to be a strong MFG equilibrium if for every $\tau \in S_X$ we have:

$$J(\mu, au^*) \geq J(\mu, au)$$

with $\mu = \mathcal{L}(\tau^* | W^0)$.

MFG of Timing Problem

1. Best Response Optimization: for each random environment μ solve

$$\hat{ heta} \in \arg \sup_{ heta \in \mathcal{S}_X, heta \leq T} J(\mu, heta);$$

2. Fixed-Point Step: find μ so that

$$\forall t \in [0, T], \ \mu(W^0, [0, t]) = \mathbb{P}[\hat{\theta} \leq t | W^0].$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

ASSUMPTIONS

- (C) For each fixed $(w^0, w) \in C([0, T]) \times C([0, T]), (\mu, t) \mapsto F(w^0, w, \mu, t)$ is continuous.
- (SC) For each fixed $(w^0, w, \mu) \in C([0, T]) \times C([0, T]) \times P([0, T]), t \mapsto F(w^0, w, \mu, t)$ is upper semicontinuous.
- (ID) For any progressively measurable random environments $\mu, \mu' : C([0, T]) \mapsto \mathcal{P}([0, T])$ s.t. $\mu(w^0) \le \mu'(w^0)$ a.s.

$$M_t = F(W^0, W, \mu'(W^0), t) - F(W^0, W, \mu(W), t)$$

is a sub-martingale.

(ID) holds when *F* has increasing differences $t \le t'$ and $\mu \le \mu'$ imply:

$$F(w^{0}, w, \mu', t') - F(w^{0}, w, \mu', t) \geq F(w^{0}, w, \mu, t') - F(w^{0}, w, \mu, t).$$

(ID) \implies the expected reward J has also increasing differences

$$J(\mu',\tau') - J(\mu',\tau) \ge J(\mu,\tau') - J(\mu,\tau)$$

Major Disappointment: if $F(w^0, w, \mu, t) = G(\mu[0, t])$ for some real-valued continuous function *G* on [0, 1] which we assume to be differentiable on (0, 1), if *F* satisfies assumption **(ID)**, then *G* is constant!

FIXED POINT RESULTS ON ORDER LATTICES

Recall: A partially ordered set (S, \leq) is said to be a lattice if:

$$x \lor y = \inf\{z \in \mathcal{S}; z \ge x, z \ge y\} \in \mathcal{S}$$

and

$$x \wedge y = \sup\{z \in S; z \leq x, z \leq y\} \in S,$$

for all $x, y \in S$. A lattice (S, \leq) is said to be complete if every subset $S \subset S$ has a greatest lower bound inf S and a least upper bound sup S, with the convention that $\inf \emptyset = \sup S$ and $\sup \emptyset = \inf S$.

Example: The set S of stopping times of a right continuous filtration $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$

Fact 1: If S is a complete lattice and $\Phi : S \ni x \mapsto \Phi(x) \in S$ is order preserving in the sense that $\Phi(x) \le \Phi(y)$ whenever $x, y \in S$ are such that $x \le y$, the set of fixed points of Φ is a non-empty complete lattice.

Another definition: A real valued function *f* on a lattice (S, \leq) is said to be supermodular if for all $x, y \in S$

$$f(x \lor y) + f(x \land y) \ge f(x) + f(y).$$

EXISTENCE OF STRONG EQUILIBRIA

Under assumptions (SC) and (ID) there exists a strong equilibrium.

- S_X stopping times for the filtration of X
- $\mathcal{M}_0(T)$ random \mathbb{F}^{W_0} -adapted probability measures on [0, T]

$$\mathcal{M}_{\mathcal{T}}^{\mathsf{0}}
i \mu \mapsto \Phi(\mu) = \arg \max_{\tau \in \mathcal{S}_{\mathsf{X}}} J(\mu, \tau)$$

is nondecreasing in the strong set order

- Φ(µ) is a nonempty complete sub-lattice of S_X.
- $\Phi(\mu)$ has a maximum $\phi^*(\mu)$ and a minimum $\phi_*(\mu)$
- $\phi^*: \mathcal{M}^0_T \to \mathcal{S}_X$ is non-decreasing
- $\psi: S_{\mathbf{X}} \to \mathcal{M}^{\mathbf{0}}_{\mathcal{T}}$ defined by $\psi(\tau) = \mathcal{L}(\tau | W^{\mathbf{0}})$ is monotone
- $\phi^* \circ \psi$ is a monotone map from $\mathcal{S}_{\mathbf{X}}$ to itself
- Since S_X is a complete lattice Tarski's fixed point Theorem gives a fixed point τ i.e. a strong equilibrium for the mean field game of timing

EXISTENCE OF STRONG EQUILIBRIA

If (C) holds there exist strong equilibria τ^* and θ^* such that for any strong equilibrium τ we have $\theta^* \leq \tau \leq \tau^*$ a.s.

$$\quad \bullet \quad \tau_0 \equiv T_1$$

•
$$\tau_i = \phi^* \circ \psi(\tau_{i-1})$$
 for $i \ge 1$ by induction.

- $\blacktriangleright \tau_1 \leq \tau_0,$
- If $\tau_i \leq \tau_{i-1}$, the monotonicity of $\phi^* \circ \psi$ implies $\tau_{i+1} = \phi^* \circ \psi(\tau_i) \leq \phi^* \circ \psi(\tau_{i-1}) = \tau_i$.
- Define $\tau^* = \lim_{i \to \infty} \tau_i$
- $\tau^* \in S_X$ (right continuous filtration)
- For any $\sigma \in S_{\mathbf{X}} J(\psi(\tau_i), \tau_{i+1}) \ge J(\psi(\tau_i), \sigma)$
- (dominated convergence + *F* continuous) $\Rightarrow J(\psi(\tau^*), \tau^*) \ge J(\psi(\tau^*), \sigma)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• τ^* is a mean field game of timing equilibrium in the strong sense.

EXISTENCE OF STRONG EQUILIBRIA (CONT.)

- ► $\theta_0 \equiv 0$,
- $\theta_i = \phi_* \circ \psi(\theta_{i-1})$ for $i \ge 1$.
- $\theta_0 \leq \theta_1$, and as before $\theta_{i-1} \leq \theta_i$.
- ▶ Define θ_{*} as the a.s. limit of the non-decreasing sequence of stopping times (θ_i)_{i≥1}.
- As before θ_∗ ∈ S_X is a fixed point of the map φ_∗ ∘ ψ and thus a strong equilibrium.

EXISTENCE OF STRONG EQUILIBRIA (CONT.)

- If τ is any equilibrium,
- au is a fixed point of the set-valued map $\Phi \circ \psi$

 $\tau \in \Phi(\psi(\tau))$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\bullet \ \theta_0 = \mathbf{0} \le \tau \le \mathbf{T} = \tau_0$$

- ▶ Apply $\phi_* \circ \psi$ and $\phi^* \circ \psi$ repeatedly to the left and right sides
- Get $\theta_n \leq \tau \leq \tau_n$ for each *n*,
- In the limit $\theta_* \leq \tau \leq \tau^*$.